Kinetics of the reaction of hydrogen evolution on steel in a hydrochloric acid solution containing corrosion inhibitors

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The kinetics of cathodic reduction of hydrogen on low-carbon steel in 2 M HCl (t = 25 °C) containing corrosion inhibitors – catamine AB and IFKhAN-92 – was studied. The main rate constants for the stages of hydrogen gas evolution and the introduction of hydrogen atoms into steel are determined. The additions of catamine AB and IFKhAN-92 inhibited the cathodic reduction of hydrogen and its permeation into steel in an HCl solution. The most effective inhibitor of hydrogen absorption is IFKhAN-92. The inhibitory effect of this compound is due to a decrease in the ratio of the hydrogen concentration in the metal phase to the degree of hydrogen filling of the surface. IFKhAN-92 reduction of hydrogen concentration in the volume of metal determines the preservation of the plastic properties of steels during corrosion in HCl solutions. The high efficiency of IFKhAN-92, as an inhibitor of cathodic reduction of hydrogen and its absorption, is the result of chemisorption of this compound on the surface of the steel and the formation of a polymolecular protective layer.

全文:

受限制的访问

作者简介

Ya. Avdeev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: avdeevavdeev@mail.ru
俄罗斯联邦, Moscow

T. Nenasheva

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
俄罗斯联邦, Moscow

A. Luchkin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
俄罗斯联邦, Moscow

A. Panova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
俄罗斯联邦, Moscow

A. Marshakov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
俄罗斯联邦, Moscow

Yu. Kuznetsov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
俄罗斯联邦, Moscow

参考

  1. Ya.G. Avdeev, T.A. Nenasheva, A.Yu. Luchkin et al. Russ. J. Phys. Chem. B, 18, 111 (2024). https://doi.org/10.1134/S1990793124010044
  2. E.I. Rudenko, N.V. Dohlikova, A.K. Gatin et al. Russ. J. Phys. Chem. B, 17(4), 845 (2023). https://doi.org/10.1134/S1990793123040164
  3. N.V. Dokhlikova, S.A. Ozerin, S.V. Doronin et al. Russ. J. Phys. Chem. B, 16(3), 461 (2022). https://doi.org/10.1134/S1990793122030137
  4. N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadiy et al. Russ. J. Phys. Chem. B, 15(4), 732 (2021). https://doi.org/10.1134/S1990793121040023
  5. N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadiy et al. Russ. J. Phys. Chem. B, 16(2), 361 (2022). https://doi.org/10.1134/S1990793122020166
  6. N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadii et al. Russ. J. Phys. Chem. B, 14(5), 733 (2020). https://doi.org/10.1134/S1990793120050036 .
  7. S. Muralidharan, M.A. Quraishi and S.V.K. Iyer. Corros. Sci., 37, 1739 (1995). https://doi.org/10.1016/0010-938X(95)00068-U
  8. A.I. Marshakov, T.A. Nenasheva, A.A. Rybkina et al. Prot. Met., 43, 77 (2007). https://doi.org/10.1134/S0033173207010110
  9. S. Hari Kumar, P.A. Vivekanand, P. Kamaraj. Mat. Today: Proceed., 36, 898 (2021). https://doi.org/10.1016/j.matpr.2020.07.027
  10. M.A.V. Devanathan, Z. Stachurski. Proceeding of the royals Society. Ser. A. Mathematical and Physical Science, 270А, 90 (1962). https://doi.org/10.1098/rspa.1962.0205
  11. M.A.V. Devanathan, Z. Stachurski. J. Electrochem. Soc., 3, 619 (1964). https://doi.org/10.1149/1.2426195
  12. R.N. Iyer, H.W. Pickering, M. Zamanzadeh. J. Electrochem. Soc., 136, 2463 (1989). https://doi.org/10.1149/1.2097429
  13. B.N. Popov, J.-W. Lee, M.B. Djukic. Handbook of Environmental Degradation of Materials (Third Edition), Elsevier Inc., 133 (2018). https://doi.org/10.1016/B978-0-323-52472-8.00007-1
  14. C.D. Wagner, L.E. Davis, M.V. Zeller et al. Surf. Inter. Analysis., 3, 211 (1981). https://doi.org/10.1002/sia.740030506
  15. D.A. Shirley. Phys. Rev. B, 5, 4709 (1972). https://doi.org/10.1103/PhysRevB.5.4709
  16. T.J. Harvey, F.C. Walsh, A.H. Nahlé, J. Mol. Liq., 266, 160 (2018). https://doi.org/10.1016/j.molliq.2018.06.014

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Cathodic polarization curves on steel (a) and potential dependence of hydrogen introduction rate (b) in 2 m hcl solution containing 5 mm ir.

下载 (49KB)
3. Fig. 2. Polarization curves on high-strength steel in 2 M HCl solution (1) with 5 mM AB catamine (2) and IFCHAN-92 (3) additives.

下载 (31KB)
4. Fig. 3. Equivalent electrical diagram and Nyquist diagrams of steel electrode in 2 M HCl solution (1), taken after introduction of 0.01 mM IFCHAN-92 into the solution with exposure time (min): 2 - 5, 3 - 15, 4 - 60, 5 - 120, 6 - 180.

下载 (66KB)
5. Fig. 4. Adsorption isotherm of IFCHAN-92 on steel (E = -0.30 B) in 2 M HCl solution.

下载 (23KB)
6. Fig. 5. Standard RFE electron spectrum of Fe(2p) surface of steel (spin orbital splitting - duplet), after pre-adsorption of the inhibitor with 2 M HCl + 5 mM IFCHAN-92 for 24 h.

下载 (56KB)
7. Fig. 6. XRD electron O(1s) spectra of the steel surface after pre-adsorption of the inhibitor 2 M HCl + + + 5 mM IFCHAN-92 for 24 h.

下载 (64KB)
8. Fig. 7. RFE spectra of N(1s) electrons of steel surface after preliminary adsorption of inhibitor 2 M HCl + 5 mM IFCHAN-92 for 24 h followed by washing in an ultrasonic bath.

下载 (43KB)

版权所有 © Russian Academy of Sciences, 2025