Influence of the choice of kinetic mechanism on predicted structure of lean hydrogen–air flames
- 作者: Tereza A.M.1, Agafonov G.L.1, Anderzhanov E.K.1, Betev A.S.1, Khomik S.V.1, Cherepanova T.T.1, Cherepanov A.A.1, Medvedev S.P.1
-
隶属关系:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- 期: 卷 44, 编号 4 (2025)
- 页面: 79-87
- 栏目: Combustion, explosion and shock waves
- URL: https://vestnikugrasu.org/0207-401X/article/view/682729
- DOI: https://doi.org/10.31857/S0207401X25040097
- ID: 682729
如何引用文章
详细
The influence of the choice of a detailed kinetic mechanism (DKM) on the structure of a laminar flame for lean hydrogen-air mixtures has been studied by means of numerical simulation using a CHEMKIN-Pro software module. It is shown that the choice of three detailed kinetic mechanisms (DKMs), differing in the rate constants of elementary reactions, the number of reaction pathways, and the presence of additional components, has virtually no effect on flame propagation velocity and flame structure. It is found that small differences in the local sensitivity of heat release to elementary reactions can provide reliable information on possible ways of influencing flame propagation.
全文:

作者简介
A. Tereza
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: tereza@chph.ras.ru
俄罗斯联邦, Moscow
G. Agafonov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: tereza@chph.ras.ru
俄罗斯联邦, Moscow
E. Anderzhanov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: tereza@chph.ras.ru
俄罗斯联邦, Moscow
A. Betev
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: tereza@chph.ras.ru
俄罗斯联邦, Moscow
S. Khomik
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: tereza@chph.ras.ru
俄罗斯联邦, Moscow
T. Cherepanova
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: tereza@chph.ras.ru
俄罗斯联邦, Moscow
A. Cherepanov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: tereza@chph.ras.ru
俄罗斯联邦, Moscow
S. Medvedev
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: tereza@chph.ras.ru
俄罗斯联邦, Moscow
参考
- A.M. Domashenko, A.V. Stepanov. Vesti gazovoj nauki 51(2), 211 (2022).
- S.V. Korobtsev, V.N. Fateev, R.O. Samsonov, S.I. Kozlov. Transport na alternativnom toplive 5, 68 (2008).
- A.A. Abagyan, E.O. Adamov, E.V. Burlakov. Proc. IAEA Conf. (Intern.). Vienna, Austria. 1996. IAEA-J4-TC972. P. 46.
- G. Saji, Nucl. Eng. Des. 307, 64 (2016). http://dx.doi.org/10.1016/j.nucengdes.2016.01.039
- Bentaib, N. Meynet, A. Bleyer. Nucl. Eng. 47(1), 26 (2015). https://doi.org/10.1016/j.net.2014.12.001
- Kirillov, N. Kharitonova, R. Sharafutdinov, N. Krenniikov. Nucl. Rad. Safety J. 2(84), 26 (2017).
- Yakovenko, A. Kiverin, K. Melnikova. Fluids 6(1), 21 (2021). https://doi.org/10.3390/fluids6010021
- I.S. Yakovenko, I.S. Medvedkov, A.D. Kiverin. Russ. J. Phys. Chem. B. 16, 294 (2022). https://doi.org/10.1134/S1990793122020142
- A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov, A.S. Betev, S.P. Medvedev, S.V. Khomik, T.T. Cherepanova. Russ. J. Phys. Chem. B. 17(4), 974 (2023). https://doi.org/10.1134/S1990793123040309
- P. Krivosheyev, Y. Kisel, A. Skilandz, K. Sevrouk, O. Penyazkov, A. Tereza. Int. J. Hydrogen Energy 66, 81 (2024). https://doi.org/10.1016/j.ijhydene.2024.03.363
- D.A. Frank-Kamenetskii. Diffusion and Heat Transfer in Chemical Kinetics. (Plenum, New York, 1969).
- A.A. Azatyan, S.K. Abramov, A.A. Borisov, V.M. Prokopenko. Russ. J. Phys. Chem. A. 86 (3), 355 (2012). https://doi.org/10.1134/S0036024412030053
- A.L. Sanchez, F.A. Williams. Prog. Energy Combust. Sci. 41, 1 (2014). https://doi.org/10.1016/j.pecs.2013.10.002
- A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al. Russ. J. Phys. Chem. B. 17 (6), 1294. https://doi.org/10.1134/S1990793123060246
- D.A. Knyazkov, A.G. Shmakov, O.P. Korobeinichev. Combust. Flame 151, 37 (2007). https://doi.org/10.1016/j.combustflame.2007.06.011
- D.A. Knyazkov, V. Shvartsberg, A. Dmitriev et al. Combustion Explosion and Shock Waves 53, 491 (2017). https://doi.org/10.1134/S001050821705001X
- A.G. Shmakov. Doctoral Dissertation in Chemistry. (Voevodsky Inst. of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2022).
- A.E. Elyanov, A.I. Gavrikov, V.V. Golub, A.Y. Mikushkin, V.V. Volodin. Process Saf. Environm. Prot. 164, 50 (2022). https://doi.org/10.1016/j.psep.2022.06.007
- D.L. Baulch, C.T. Bowman, C.J. Cobos et al. J. Phys. Chem. Ref. Data. 34(3), 757 (2005). https://doi.org/10.1063/1.1748524
- A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al. Russ. J. Phys. Chem. B 16, 686 (2022). https://doi.org/10.1134/S1990793122040297
- Keromnes, W.K. Metcalfe, K.A. Heufer et al. Combust. and Flame 160, 995 (2013). https://doi.10.1016/j.combustflame.2013.01.001
- A.A. Konnov. Combust. and Flame 203, 14 (2019). https://doi.org/10.1016/j.combustflame.2019.01.032
- CHEMKIN-Pro 15112, Reaction Design, San Diego, CK-TUT-10112-1112-UG-1., 2011.
- S.P. Karkach, V.I. Osherov. J. Chem. Phys. 110, 11918 (1999). http://dx.doi.org/10.1063/1.479131
- J.V. Michael, J.W. Sutherland, L.B. Harding et al. // Proc. Combust. Symp. 28, 1471 (2000).
- P.A. Vlasov, V.N. Smirnov, A.M. Tereza. Russ. J. Phys. Chem. B 10, 456 (2016). https://doi.10.1134/S1990793116030283
- S. Medvedev, G. Agafonov, S. Khomik. Acta Astronaut. 126, 150 (2016). https://doi.org/10.1016/j.actaastro.2016.04.019
- A.E. Lutz, R.J. Kee, J.A. Miller. Sandia National Laboratories, Livermore, CA, SAND 87-82481998.
- R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller. Sandia National Laboratories, Livermore, CA, SAND85-8240, 1985.
- V.V. Roenko, A.P. Karmes. Tekhnologia pozharotushenia 3, 15 (2017).
- B.E. Gel’fand, O.M. Popov, B.B. Chaivanov. Hydrogen: Parameters of Combustion and Explosion (Fizmatlit, Moscow, 2008) [In Russian].
补充文件
