On gas-dynamic similarity of high-pressure hydrogen release into air

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper discusses the issues of gas-dynamic similarity in the problem of high-pressure hydrogen release into air and the possibility of laboratory modeling of the process by reducing the initial pressure at a fixed ratio of hydrogen and air pressures. The fundamental factor in the considered problem is the probability of hydrogen spontaneous ignition, which significantly limits the applicability of gas-dynamic similarity in modeling the considered process. It is shown, however, that for large values of the hydrogen and air pressure ratio (from 200 to 700 and higher) in view of the small values of the hydrogen ignition delay time, one can speak about the gas-dynamic similarity in a wide range of initial pressures. This should allow laboratory modeling the process of high-pressure hydrogen release with subsequent spontaneous ignition in atmospheric air at reduced pressure.

全文:

受限制的访问

作者简介

A. Kiverin

Joint institute for high temperatures of the Russian Academy of Sciences; Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: alexeykiverin@ihed.ras.ru
俄罗斯联邦, Moscow; Novosibirsk

A. Smygalina

Joint institute for high temperatures of the Russian Academy of Sciences

Email: alexeykiverin@ihed.ras.ru
俄罗斯联邦, Moscow

参考

  1. L. Yu, X. Yang, Z. Zhang et al. J. Energy Storage. 65, 107342 (2023)
  2. Morandé, L. Patricio, B. Elodie et al. J. Energy Storage. 64, 107193 (2023).
  3. J. Zheng, X. Liu, P. Xu, et al. Int. J. Hydrogen Energy. 37 (1), 1048 (2012).
  4. P. Wolanski, S. Wojcicki. 14th Sympos. (Int.) on Combustion. Pittsburgh: The Combust. Inst. 1, 1217 (1973).
  5. V.V. Golub, D.I. Baklanov, T.V. Bazhenova et al. J. Loss Prev. Process Ind. 20 (4–6), 439 (2007).
  6. V.N. Mironov, O.G. Penyazkov, D.G. Ignatenko. Int. J. Hydrogen Energy. 40 (16), 5749 (2015).
  7. Y.R. Kim, H.J. Lee, S. Kim et al. Proc. Combust. Inst. 34, 2057 (2013).
  8. Y. Li, Y. Jiang, X. Pan, et al. Fuel. 303, 121294 (2021).
  9. A.E. Smygalina, A.D. Kiverin. Russ. J. Phys. Chem. B. 17 (4), 907 (2023).
  10. S. Golovastov, V. Bocharnikov. Int. J. Hydrogen Energy. 37 (14), 10956 (2012).
  11. A.E. Smygalina, A.D. Kiverin. J. Energy Storage. 73, 108911 (2023).
  12. A.E. Smygalina, A.D. Kiverin. Russ. J. Phys. Chem. B. 15, 672 (2021).
  13. C. Kuang, S. Nie, Y. Lin et al. Fire. 7 (7), 216(2024).
  14. M. O’Conaire, H.J. Curran, J.M. Simmie et al. Int. J. Chem. Kinet. 36 (11), 603 (2004).
  15. P. Krivosheyev, Yu. Kisel, A. Skilandz et al. Int. J. Hydrogen Energy. 66, 81 (2024).
  16. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al. Russ. J. Phys. Chem. B. 17(2), 425 (2023).
  17. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al. Combustion and Explosion (Gorenie I Vzryv (Moskva)). 14 (4), 4 (2021).
  18. Kiverin, A. Yarkov, I. Yakovenko. Computation. 12 (5), 103 (2024).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Characteristic flow structure in the region of hydrogen self-ignition when it flows under high pressure into the air

下载 (134KB)
3. Fig. 2. Calculation of pressure (solid lines) and temperature (dashed lines) in the region between the shock wave front and the contact discontinuity for different values ​​of the initial pressure p0 and pressure ratio  = 100 (1), 200 (2), 700 (3).

下载 (106KB)
4. Fig. 3. Dependences of ignition delay time under conditions realized during the flow of hydrogen under high pressure into the air

下载 (108KB)

版权所有 © Russian Academy of Sciences, 2025