On gas-dynamic similarity of high-pressure hydrogen release into air

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper discusses the issues of gas-dynamic similarity in the problem of high-pressure hydrogen release into air and the possibility of laboratory modeling of the process by reducing the initial pressure at a fixed ratio of hydrogen and air pressures. The fundamental factor in the considered problem is the probability of hydrogen spontaneous ignition, which significantly limits the applicability of gas-dynamic similarity in modeling the considered process. It is shown, however, that for large values of the hydrogen and air pressure ratio (from 200 to 700 and higher) in view of the small values of the hydrogen ignition delay time, one can speak about the gas-dynamic similarity in a wide range of initial pressures. This should allow laboratory modeling the process of high-pressure hydrogen release with subsequent spontaneous ignition in atmospheric air at reduced pressure.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Kiverin

Joint institute for high temperatures of the Russian Academy of Sciences; Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: alexeykiverin@ihed.ras.ru
Ресей, Moscow; Novosibirsk

A. Smygalina

Joint institute for high temperatures of the Russian Academy of Sciences

Email: alexeykiverin@ihed.ras.ru
Ресей, Moscow

Әдебиет тізімі

  1. L. Yu, X. Yang, Z. Zhang et al. J. Energy Storage. 65, 107342 (2023)
  2. Morandé, L. Patricio, B. Elodie et al. J. Energy Storage. 64, 107193 (2023).
  3. J. Zheng, X. Liu, P. Xu, et al. Int. J. Hydrogen Energy. 37 (1), 1048 (2012).
  4. P. Wolanski, S. Wojcicki. 14th Sympos. (Int.) on Combustion. Pittsburgh: The Combust. Inst. 1, 1217 (1973).
  5. V.V. Golub, D.I. Baklanov, T.V. Bazhenova et al. J. Loss Prev. Process Ind. 20 (4–6), 439 (2007).
  6. V.N. Mironov, O.G. Penyazkov, D.G. Ignatenko. Int. J. Hydrogen Energy. 40 (16), 5749 (2015).
  7. Y.R. Kim, H.J. Lee, S. Kim et al. Proc. Combust. Inst. 34, 2057 (2013).
  8. Y. Li, Y. Jiang, X. Pan, et al. Fuel. 303, 121294 (2021).
  9. A.E. Smygalina, A.D. Kiverin. Russ. J. Phys. Chem. B. 17 (4), 907 (2023).
  10. S. Golovastov, V. Bocharnikov. Int. J. Hydrogen Energy. 37 (14), 10956 (2012).
  11. A.E. Smygalina, A.D. Kiverin. J. Energy Storage. 73, 108911 (2023).
  12. A.E. Smygalina, A.D. Kiverin. Russ. J. Phys. Chem. B. 15, 672 (2021).
  13. C. Kuang, S. Nie, Y. Lin et al. Fire. 7 (7), 216(2024).
  14. M. O’Conaire, H.J. Curran, J.M. Simmie et al. Int. J. Chem. Kinet. 36 (11), 603 (2004).
  15. P. Krivosheyev, Yu. Kisel, A. Skilandz et al. Int. J. Hydrogen Energy. 66, 81 (2024).
  16. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al. Russ. J. Phys. Chem. B. 17(2), 425 (2023).
  17. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al. Combustion and Explosion (Gorenie I Vzryv (Moskva)). 14 (4), 4 (2021).
  18. Kiverin, A. Yarkov, I. Yakovenko. Computation. 12 (5), 103 (2024).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Characteristic flow structure in the region of hydrogen self-ignition when it flows under high pressure into the air

Жүктеу (134KB)
3. Fig. 2. Calculation of pressure (solid lines) and temperature (dashed lines) in the region between the shock wave front and the contact discontinuity for different values ​​of the initial pressure p0 and pressure ratio  = 100 (1), 200 (2), 700 (3).

Жүктеу (106KB)
4. Fig. 3. Dependences of ignition delay time under conditions realized during the flow of hydrogen under high pressure into the air

Жүктеу (108KB)

© Russian Academy of Sciences, 2025