Regularities of the formation of cool-flame oxidation products of rich propane-oxygen mixtures in a two-section reactor

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of the ratio of the reagents on a stabilized cool flame of rich propane-oxygen mixtures is investigated. It was found that with an increase in the initial concentration of propane in the mixture, its consumption, as well as the concentration of propylene, has a maximum a ratio of C3H8 : O2 = 1 : 1. In this case, the selectivity of propylene formation reaches a maximum a ratio of C3H8 : O2 = 4 : 1. It is shown that an increase in the initial propane concentration in the mixture increases the yield of methane, but reduces the yield of propylene, ethylene, hydrogen, CO, CO2, methanol, formaldehyde and acetaldehyde. At a ratio of C3H8 : O2 = 6 : 1, ethane was also found in the reaction products. The possibility of ethanol formation in the reactions of ethoxyl and hydroxyethyl radicals with acetaldehyde has been analyzed using the CBS-QB3 quantum-chemical method.

作者简介

N. Poghosyan

Nalbandyan Institute of Chemical Physics, National Academy of Sciences of Republic of Armenia

Email: strekova@bk.ru
亚美尼亚, Yerevan

M. Poghosyan

Nalbandyan Institute of Chemical Physics, National Academy of Sciences of Republic of Armenia

Email: strekova@bk.ru
亚美尼亚, Yerevan

A. Davtyan

Nalbandyan Institute of Chemical Physics, National Academy of Sciences of Republic of Armenia

Email: strekova@bk.ru
亚美尼亚, Yerevan

S. Arsentev

Nalbandyan Institute of Chemical Physics, National Academy of Sciences of Republic of Armenia

Email: strekova@bk.ru
亚美尼亚, Yerevan

L. Strekova

Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: strekova@bk.ru
俄罗斯联邦, Moscow

V. Arutyunov

Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences

Email: strekova@bk.ru
俄罗斯联邦, Moscow

参考

  1. Poghosyan N.M., Poghosyan M.D., Shapovalova O.V. et al. Technologiacal Combustion / Ed. Aldoshin S.M., Alimov M.I., Arutyunov V.S. et al. Moscow: Russian Academy of Sciences, 2018. P. 114. https://doi.org/10.31857/S9785907036383000005
  2. Poghosyan N.M., Poghosyan M.D., Strekova L.N. et al. // Russ. J. Phys. Chem. B. 2015. V. 9(2). P. 218. https://doi.org/10.1134/S1990793115020104
  3. Poghosyan N.M., Poghosyan M.D., Arsentiev S.D. // Russ. J. Phys. Chem. B. 2015. V. 9(2). P. 231. https://doi.org/10.1134/S199079311502027X
  4. Grigoryan R.R., Arsentev S.D. // Pet. Chem. 2020. V. 60. № 2. P. 187. https://doi.org/10.1134/S096554412002005X
  5. Pogosyan N.M., Pogosyan M.Dj., Arsentiev S.D. et al. // Petr. Chem. 2020. V. 60. № 3. P. 316. https://doi.org/10.1134/S0965544120030172
  6. Arsentev S.D., Tavadyan L.A., Bryukov M.G. et al. // Russ. J. Phys. Chem. B. 2022. V. 16(6). P. 1019. https://doi.org/10.1134/S1990793122060021
  7. Palankoeva A.S., Belyaev A.A., Arutyunov V.S. // Russ. J. Phys. Chem. B. 2022. V. 16(3). P. 399. https://doi.org/10.1134/S1990793122030204
  8. Bryukov M.G., Belyaev A.A., Zakharov A.A. et al. // Kinetics and Catalysis. 2022. V. 63(6). P. 653. https://doi.org/10.1134/S0023158422060039
  9. Shtern V.Ya. Oxidation of Hydrocarbons. Oxford, London, New York: Pergamon Press, 1964.
  10. Prettre M. // Bul. Soc. Chim. Fr. 1932. Ser. 4. V. 41. № 9. P. 1132.
  11. Knox J.H., Norrish R.G.W. // Trans. Far. Soc. 1954. V. 50. № 9. P. 928.
  12. Hughes R., Simmons R.F. // Combust and Flame. 1970. V. 14. № 1. P. 103.
  13. Ouellet L., Leger E., Ouellet C. // J. Chem. Phys. 1950. V. 18. P. 383. https://doi.org/10.1063/1.1747636
  14. Unusual “cool flames” discovered aboard International Space Station. https://new.nsf.gov/news/unusual-cool-flames-discovered-aboard
  15. Lin K.C., Chiu Ch.-T. // Fuel. 2017. V. 203. P. 102. http://dx.doi.org/10.1016/j.fuel.2017.04.064
  16. Liu J., Yu R., Ma B. // ACS Omega 2020. V. 5. P. 16448.
  17. Titova N.S., Kuleshov P.S., Starik A.M. // Combust. Explosion, Shock Waves. 2011. V. 47. № 3. P. 249. https://doi.org/10.1134/S0010508211030014
  18. Poghosyan N.M., Poghosyan M.D., Arsentev S.D. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 5. P. 1130. https://doi.org/10.31857/S0207401X2309008X
  19. Mantashyan A.A. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 233. https://doi.org/10.1134/S1990793121020214
  20. Troshin K.Ya., Rubtsov N.M., Tsvetkov G.I. // Russ. J. Phys. Chem. B. 2022. V. 16(1). P. 39. https://doi.org/10.1134/S199079312201016X
  21. Mantashyan A.A., Gukasyan P.S. // Dokl. Acad. Nauk USSR. 1977. V. 234(2). P. 379.
  22. Mantashyan A.A., Gukasyan P.S., Sayadyan R.H. // React. Kinet. Cat. Lett. 1979. V. 11. P. 225. https://doi.org/10.1007/BF02067830
  23. Pogosyan M.J., Aliev R.K., Mantashyn A.A. // React. Kinet. Cat. Lett. 1985. V. 27. № 2. P. 437. https://doi.org/10.1007/BF02070490
  24. Simonyan T.R., Mantashyan A.A. // React. Kinet. Cat. Lett. 1981. V. 17. № 3–4. P. 319.
  25. Simonyan T.R., Mantashyan A.A. // Arm. Khim. Zhurn. 1979. V. 32(10). P. 757.
  26. Carlier M., Sochet L.-R. // Combust and Flame. 1978. V. 33. № 1–4. P. 1. https://doi.org/10.1016/0010-2180(78)90039-1
  27. Pauwels J.F., Carlier M., Devolder P., Sochet L.-R. // Ibid. 1990. V. 82. № 2. P. 163. https://doi.org/10.1016/0010-2180(90)90095-9
  28. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman, J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A. Jr., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 16. Rev. C.01, Wallingford CT: Gaussian, Inc., 2016.
  29. Dennington R., Keith T.A., Millam J.M. GaussView. Ver. 6.1, Shawnee Mission, KS: Semichem Inc., 2019.
  30. Grigoryan R.R., Aresnt’ev S.D., Mantashyan A.A. // Combustion, Explosion, and Shock Waves. 1981. V. 17(3). P. 272. https://doi.org/10.1007/BF00751298
  31. Poladyan E.A., Grigoryan G.L., Khachatryan L.A., Mantashyan A.A. // Kinet. Katal. 1976. V. 17(2). P. 304.
  32. Grigoryan R.R., Arsentev S.D., Mantashyan A.A. // Chemistry and Chemical Technology. 1983. V. 2. P. 15.
  33. Mantashyan A.A. // Chem. Phys. Reports. 1996. V. 15(4). P. 545.
  34. Mantashyan A.A. Khachatryan L.A. Niazyan O.M., Arsentyev S.D. // Combust. and Flame. 1981. V. 43. P. 221. https://doi.org/10.1016/0010-2180(81)90022-5
  35. Hippler H., Striebel F., Viskolcz B. // Phys. Chem. Chem. Phys. 2001. V. 3. № 12. P. 2450; https://doi.org/10.1039/B101376I
  36. Xu Z.F., Xu K., Lin M.C. // ChemPhysChem. 2009. V. 10. P. 972. https://doi.org/10.1002/cphc.200800719
  37. Zhang Y., Zhang S.W., Li Q.S. // Chem. Phys. 2004. V. 296. P. 79. https://doi.org/10.1016/J.CHEMPHYS.2003.09.030
  38. Mantashyan A.A., Arsentev S.D. // Kinetika i kataliz. 1981. V. 22(4). P. 898.
  39. Mantashyan A.A., Arsentev S.D. // Kinetika i kataliz. 1981. V. 22(6). P. 1389.
  40. Morris E.D., Stedman D.H., Niki H. // J. Amer. Chem. Soc. 1971. V. 93. № 15. P. 3570.
  41. Meagher J.F., Heicklen J. // J. Phys. Chem. 1976. V. 80. № 15. P. 1645.
  42. Davtyan A.H., Manukyan Z.H., Arsentev S.D. et al. // Russ. J. Phys. Chem. B. 2023. V. 17(2). P. 336. https://doi.org/10.1134/S1990793123020239
  43. Williams A.E., Hammer N.I., Tschumper G.S. // J. Chem. Phys. 2021. V. 155. № 114306. https://doi.org/10.1063/5.0062809

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024