Investigation of changes in the surface conductivity of lithium fluoride during hydrogen fluoride adsorption

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The change in the surface conductivity of lithium fluoride (LiF) during the adsorption of hydrogen fluoride (HF) has been experimentally investigated. It is shown that the specific surface conductivity of lithium fluoride increases approximately 104 times during the HF pressure change in the range of 0–200 Torr. A model is proposed to describe the experimental results obtained.

Sobre autores

V. Agroskin

Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: agroskin@mail.ru
Rússia, Chernogolovka

B. Bravy

Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences

Email: agroskin@mail.ru
Rússia, Chernogolovka

V. Guriev

Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences

Email: agroskin@mail.ru
Rússia, Chernogolovka

S. Kashtanov

Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences

Email: agroskin@mail.ru
Rússia, Chernogolovka

Yu. Chernyshev

Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences

Email: agroskin@mail.ru
Rússia, Chernogolovka

Bibliografia

  1. Kobzar N.Y., Makaseev A.Y., Khokhlov V.A. // Proceedings of Tomsk Polytechnic University, 309, No. 6. 68 (2006).
  2. Bilyalov R.M., Kobzar N.Y., Makaseev A.Y., Khokhlov V.A. // Proceedings of Tomsk Polytechnic University, 309, No. 6. 70 (2006).
  3. Sahar Afzal, Amir Rahimi, Mohammad Reza Ehsani, Hossein Tavakoli // J. Industr. and Engin. Chem. No. 16, 147 (2010). https://doi.org/10.1016/j.jiec.2010.01.004
  4. Ruzmatova G.K. // Dis. … Cand. of Chem. Sciences, Dushanbe: Tajik Technical University. (2018).
  5. Agroskin V.Ya., Brave B.G., Vasiliev G.K. et al. // Russian Journal of Physical Chemistry B, 16, No. 4, 596 (2022). https://doi.org/10.1134/S1990793122040029
  6. Agroskin V.Ya., Brave B.G., Vasiliev G.K. et al. // Russian Journal of Physical Chemistry B, 17, No. 6, 1265 (2023). https://doi.org/10.1134/S1990793123060131
  7. Luna M., Rieutord F., Melman N.A. et al. // J. Phys. Chem. A. 102, 6793 (1998).
  8. Karnaukhov A.P. // Adsorption and texture of dispersed and porous Materials. Novosibirsk, Nauka, Siberian Branch of the Russian Academy of Sciences. (1999).
  9. Swarovskaya N.A., Kolesnikov I.M., Vinokurov V.A. Electrochemistry solutions of electrolytes. Part I. Electrical Conductivity: Educational manual. Moscow: Publishing Center of the Russian State University of Oil and Gas (NRU) named after I.M. Gubkin, 2017.
  10. Non-aqueous solvent systems / Ed. T. Waddington. London, New York: Academic press, 1965.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024