Regularities of establishing of thermal regimes in countercurrent plug reactor

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For a countercurrent liquid–liquid plug reactor, theoretical studies of the implementation of possible types of stationary states were carried out. States such as a stable node and focus, and an unstable focus with a stable limit cycle (oscillations) have been discovered. Using these data, the evolution of stationary states with continuous changes in external control parameters was studied. When the relationship between the flow rates of the phases changes, a structure of stationary states is discovered, which can be realized both at the entrance and exit of the dispersion medium.

Sobre autores

N. Samoilenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: shale@icp.ac.ru
Rússia, Chernogolovka

K. Shkadinskiy

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: shale@icp.ac.ru
Rússia, Chernogolovka

E. Shatunova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: shale@icp.ac.ru
Rússia, Chernogolovka

B. Korsunskiy

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: shale@icp.ac.ru
Rússia, Chernogolovka

Bibliografia

  1. M.M. Slinko, A.G. Makeev. Kinet. Catal. 61, 495 (2020). https://doi.org/10.1134/S0023158420040114
  2. I.S. Yakovenko, I.S. Medvedkov, A.D. Kiverin. Russ. J. Phys. Chem. B 16, 294 (2022). https://doi.org/10.1134/S1990793122020142
  3. F.S. Mederos-Nieto, I. Elizalde-Martínez, F. Trejo-Zárraga et al. Reac. Kinet. Mech. Cat. 131, 613 (2020). https://doi.org/10.1007/s11144-020-01896-4
  4. L.R. Nazmutdinova. Articles of Mechanics Institute of Ufa science centre of the RAS 5, 279 (2007) [in Russian].
  5. S.O. Dorofeenko, E.V. Polianczyk. Russ. J. Phys. Chem. B 16, 242 (2022). https://doi.org/10.1134/S199079312202004X
  6. N.G. Samoilenko, E.N. Shatunova, K.G. Shkadinsky, B.L. Korsunsky, L.V. Kustova. Russ. J. Phys. Chem. B 15, 833 (2021). https://doi.org/10.1134/S1990793121040230
  7. V.I. Kovenskii. Theor. Found. Chem. Eng. 50, 1015 (2016). https://doi.org/10.1134/S0040579516040382
  8. N.G. Samoilenko, E.N. Shatunova, K.G. Shkadinskiy, B.L. Korsunskiy. Russ. J. Phys. Chem. B 16, 1130 (2022). https://doi.org/10.1134/S1990793122060203

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024