Kinetics of the soy lecithin oxidation at high concentrations. The effect of antioxidants

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Soy lecithin (RH) oxidation, initiated with different AIBN concentration, has been studied in a wide range of lecithin concentrations (0.027−0.4 mol/l). It was found that the oxidizability parameter a = kp /(2kt)0.5, where kp and kt are the rate constants of chain propagation and termination reduced significantly at higher lecithin concentration, while a linear dependence of oxidation rate on (AIBN)0.5 remained. The antiradical activity ( fkinh) of different antioxidants (AO) was evaluated at [RH] = 0.4 mol/l, which showed that the antiradical activity of phenols (PhOH) in lecithin is significantly lower than in hydrocarbons. The antiradical activity and inhibitory effects of lecithin oxidation decrease in the following raw: α-tocopherol > 3,6-di-tert-butyl-1,2-benzoquinone > > quercetin > 2,4,6-tri-tret-butylphenol.

Texto integral

Acesso é fechado

Sobre autores

L. Mazaletskaya

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: lim@sky.chph.ras.ru
Rússia, Moscow

N. Sheludchenko

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lim@sky.chph.ras.ru
Rússia, Moscow

O. Kasaikina

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: lim@sky.chph.ras.ru
Rússia, Moscow

Bibliografia

  1. G. Cevc, Phospholipids Handbook (New York: Marvel Dekker Inc., 1993).
  2. R. Gupta, H.S. Muralidhara, H.T. Davis, Langmuir. 17, 5176 (2001). https://doi.org/10.1021/la0103721
  3. L.R.C. Barclay, J.M. MacNeil, J.A. VanKessel, et al., J. Am. Chem. Sос. 106, 6740 (1984). http:// doi.org/10.1021/ja00334a045
  4. B.J. Roschek, K.A. Tallman, C.L. Rector, et al., Org. Chem. 71, 3527 (2006). https://doi.org/
  5. L. Xu, T.A. Davis, N.A. Porter, J. Аm. Chem. Soc. 131, 13037(2009). https://doi.org/10.1021/ja9029076
  6. Y. Wu, T. Wang, J. Am. Oil Chem. Soc. 80, 319 (2003).
  7. L.E. Palacios, T. Wang, J. Am. Oil Chem. Soc. 82, 571 (2005). https://doi.org/10.1007/s11746-005-1111-4
  8. O.N. Voichenko, I.A. Shabanova, E.O. Gerasimenko, at al., Novye tekhnologii. No 2, 18 (2011) (in Russia).
  9. W. Chaiyasit, R.J. Elias, D.J. Mcclements, at al., Critical Reviews in Food Science and Nutrition. 47, 299 (2007). https://doi.org/10.1080/10408390600754248
  10. O.T. Kasaikina, D.A. Krugovov, E.A. Mengele, Eur. J. Lipid Sci. Technol. 119, 1600286 (2017). https://doi.org/10.1002/ejlt.201600286
  11. E.I. Evans, Ind. Engin. Chem. 27, 329 (1935). https://doi.org/10.1021/ie50303a019
  12. M.F. King, L.C. Boyd, B.W. Sheldon, J. Am. Oil Chem. Soc. 69, 545 (1992). https://doi.org/10.1007/BF02636106
  13. A. Judde, P. Villeneuve, A. Rossignol-Castera, et al., J. Am. Oil Chem. Soc. 80, 1209 (2003). https://doi.org/10.1007/s11746-003-0844-4
  14. L. Mazaletskaya, N. Sheludchenko, L. Shishkina, Chem. and Chem. Technol. 6, 35 (2012). https://doi.org/10.23939/chcht06.01.035
  15. L.I. Mazaletskaya, N.I. Sheludchenko, L.N. Shishkina, Biophysics. 55, 18 (2010). https:// doi.org/10.1134/S0006350910010045
  16. L.I. Mazaletskaya, N.I. Sheludchenko, L.N. Shishkina, Applied Biochemistry and Microbiology. 46, 135 (2010). https:// doi.org/10.1134/S000368381002002X
  17. N.M. Emanuel, G.E. Zaikov, Z.K. Maizus, Oxidation of Organic Compounds. Effect of Medium (Oxford: Pergamon. 1984).
  18. E.T. Denisov, I.B. Afanas’ev, Oxidation and antioxidantsin in organic chemistry and biology (Taylor & Francis Group, 2005).
  19. E.A. Mengele. Z.S. Kartasheva, O.T. Kasaikina, et al., Colloid Journal. 70, 753 (2008). https:// doi.org/10.1134/S1061933X08060112
  20. E. Denisov, V. Azatian (Preprint, Ingibirovanie Tsepnyikh Reakciy, Chernogolovka. 1997).
  21. P. Pedrielli, G.F. Pedulli, L.H. Skibsted, J. Agric. Food Chem. 49, 3034 (2001). https://doi.org/10.1021/jf010017g
  22. V.A. Roginsky, Fenolʹnye antioksidanty (M: Nauka, 1988 (in Russia)).
  23. I.F Rusina, O.N. Karpukhin, O.T. Kasaikina, Russ. J. Phys. Chem. B. 7, 463 (2013). https:// doi.org/10.1134/S1990793113040192
  24. I.F. Rusina, T.L. Veprintsev, R.F. Vasil’ev, Russ. J. Phys. Chem. B. 16, 50 (2022). https:// doi.org/10.1134/S1990793122010274
  25. R. Amorati, A. Baschieri, A. Cowden, L et al., Biomimetics. 2, 9 (2017). https:// doi.org/10.3390/biomimetics2030009
  26. L.N. Shishkina, M.V. Kozlov, T.V. Konstantinova, et al., Russ. J. Phys. Chem. B. 17, 141 (2023). https:// doi.org/10.1134/s1990793123010104
  27. R.R. Sharafutdinova, R.S. Nassibullin , E.R. Fachretdinova, Khimicheskaya fizika i mezoskopiya. 10, 510 (2008) (in Russia).
  28. L.N. Shishkina, M.V. Kozlov, A.Y. Povkh. et al., Russ. J. Phys. Chem. B. 15, 861 (2021). https://doi.org/10.1134/S1990793121050080
  29. L.I. Mazaletskaya, G.V. Karpukhina, Neftekhimiya. 19, 214 (1979) (in Russia).
  30. E.M. Pliss, D.V. Loshadkin, A.M. Grobov, et al., Russ. J. Phys. Chem. B. 9, 127 (2015). https://doi.org/10.1134/S1990793115010091
  31. R. Amorati, A. Baschieri, G. Morroni, et al., Chem. Eur. J. 22, 7924 (2016).
  32. I.V. Tikhonov, L.I. Borodin, E.M. Pliss, Russ. J. Phys. Chem. B. 14, 910 (2020). https:// doi.org/10.1134/S1990793120060147
  33. S.V. Molodochkina, D.V. Loshadkin, E.M. Pliss, Russ. J. Phys. Chem. B. 18, 136 (2024). https://doi.org/10.1134/S1990793124010160
  34. V.D. Kancheva, O.T. Kasaikina, Current Medicinal Chemistry. 20, 4784 (2013). https://doi.org/10.2174/09298673113209990161

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependence of the oxidation rate of lecithin in a chlorobenzene solution on the initial concentrations of lecithin and initiator; temperature – 333 K.

Baixar (18KB)
3. Fig. 2. Dependence of the oxidation rate of soy lecithin in a chlorobenzene solution on the concentration of the initiator; [RH] = 0.4 mol/l, temperature – 333 K.

Baixar (15KB)
4. Fig. 3. Kinetic curves of oxygen absorption (V is the volume of absorbed oxygen in relative units) during oxidation of soybean lecithin in the absence (1) and in the presence of 7 10-4 mol/l antioxidants: 2 – TTBP, 3 – Q, 4 – DTBQ, 5 – TF; [AIBN]0 = 0.03 mol/l, [RH]0 = 0.4 mol/l; temperature – 333 K.

Baixar (29KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024