Influence of Conditions for Obtaining Polylactide-Based Materials on Their Physico-Mechanical and Rheological Characteristics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The work is devoted to the study of the influence of the conditions for obtaining materials based on the synthetic polymer polylactide on their physico-mechanical and rheological characteristics. These materials are promising for the creation of biodegradable polymer implants of temporary action to maintain the mechanical properties of broken bones during the healing period. They are designed to replace the titanium fixators currently used for these purposes, which is due not only to the need for repeated surgery to extract them, but also to the fact that the strength and modulus of elasticity of titanium fixators exceed the values of bone strength indicators by an order of magnitude, which can cause the phenomenon of bone resorption and a decrease in its strength. It has been established that with an increase in temperature in the plasticization and pressing zone, as well as with an increase in pressure in the press, there is a natural decrease in the viscosity of the polylactide melt, as well as the values of the elastic modulus and breaking stress of solid samples. Varying the cooling rate of the material during the pressing process affects the degree of its crystallinity. At the same time, the lower the cooling rate, the greater the degree of crystallinity of the polylactide and the greater the values of the elastic modulus and breaking stress.

Texto integral

Acesso é fechado

Sobre autores

E. Bakirova

Ufa University of Science and Technology

Autor responsável pela correspondência
Email: elina_bakirova@mail.ru
Rússia, Ufa

R. Lazdin

Ufa University of Science and Technology

Email: elina_bakirova@mail.ru
Rússia, Ufa

A. Shurshina

Ufa University of Science and Technology

Email: elina_bakirova@mail.ru
Rússia, Ufa

V. Chernova

Ufa University of Science and Technology

Email: elina_bakirova@mail.ru
Rússia, Ufa

E. Zakharova

Ufa University of Science and Technology

Email: elina_bakirova@mail.ru
Rússia, Ufa

E. Kulish

Ufa University of Science and Technology

Email: elina_bakirova@mail.ru
Rússia, Ufa

Bibliografia

  1. Wang Q., Zhou P., Liu S. et al. // Nanomaterials. 2020. V. 10. P. 1244.
  2. Nicholson W. J. // Prosthesis. 2020. V. 2. P. 100.
  3. Black J. Biological Performance of Materials: Fundamentals of Biocompatibility. N.W.: CSC Press, 1992.
  4. Hench L.L., Jones J.R. Biomaterials, artificial organs and tissue engineering. Boca Raton: CRC Press, 2005.
  5. Wong J.Y., Bronzino J.D. Biomaterials. Boca Raton: CRC Press, 2007.
  6. Shtilman M.I. Polymers for medical and biological purposes. M.: ICC “Academic book”, 2006.
  7. Kirilova I.A., Podorozhnaya V.T., Legostaeva E.V. et al. // Spinal surgery. 2010. No. 1. P. 81.
  8. Volova T.G. // Journal Siberian Federal University. Biology series. 2014. V. 7. No. 2. P. 103.
  9. Boyandin A.N., Nikolaeva E.D., Shabanov A.V. et al. // Journal Siberian Federal University. Biology series. 2014. V. 7. No. 2. P. 174.
  10. Misra S., Ansari T., Valappil S. // Biomaterials. 2010. № 31. C. 2806.
  11. Park H., Temenoff J.S., Mikos A.G. // Engineering of Functional Skeletal Tissues. 2007. V. 3. Р. 55.
  12. Shibryaeva L.S., Krasheninnikov V.G., Gorsheneva V.N. // High-molecular compounds. A. 2019. V. 61. No. 2. P. 139.
  13. Rogovina S.Z. // High-molecular compounds. C. 2016. V. 58. No. 1. P. 68.
  14. Averyanov I.V., Korzhikov V.A., Tennikova T.B. // High-molecular compounds. B. 2015. V. 57. No. 4. P. 281.
  15. Korzhikov V.A., Vlakh E.G., Tennikova T.B. // High-molecular compounds. Series A. 2012. V. 54. No. 8. P. 1203.
  16. Rogovina S.Z., Aleksanyan K.V., Vladimirov L.V. et al. // Russ. J. Phys. Chem. B. 2019. V. 13. No. 5. P. 812.
  17. Fujihara Y., Hikita A., Takato T. et al. // Physiol. 2018. V. 233. P. 1490.
  18. MacDonald Rt., McCarthy S.P., Gross R.A. // Macromolecules. 1996. № 29. Р. 7356.
  19. Dhillon M., Lokesh A. // Indian J. Orthop. 2006. № 40 (4). Р. 205.
  20. Burkhart S.S. // Biomaterials. 2000. № 21(24). Р. 2631.
  21. Kristensen G., Lind T., Lavard P. et al. // Arthrosc. J. Arthrosc. Relat. Surg. 1990. № 6 (3). Р. 242.
  22. Macarini L., Murrone M., Marini S. et al. // Radiol. Med. 2004. № 107(1-2). Р. 47.
  23. McFarland E.G., Park H.B., Keyurapan E. et al. // Am. J. Sports Med. 2005. № 33 (12). Р. 1918.
  24. Krul L.P., Belov D.A., Butovskaya G.V. // Bulletin of the Belarusian State University. Chemistry. 2011. No. 3. P. 5.
  25. Zhang J., Duan Y., Sato H. // Macromolecules. 2005. V. 38. № 19. P. 8012.
  26. Nakayama N., Hayashi T. // Polym. Degrad. Stab. 2007. V. 92. P. 1255.
  27. Tertyshnaya Yu.V., Podzorova M.V. // Russ. J. Phys. Chem. B. 2020. V. 14. No. 1. P. 167.
  28. Zhang J., Tsuji H., Noda I. et al. // Macromolecules. 2004. V. 37. № 17. P. 6433.
  29. Lim L.-T., Auras R., Rubino M. // Prog. Polym. Sci. 2008. V. 33, № 8. P. 820.
  30. Fischer E.W., Sterzel H.J., Wegner G. // Colloid and Polymer Science. 1973. № 251. P. 980.
  31. Schramm G.A. Practical Approach to Rheology and Rheometry 2nd Edition. Karlsruhe: Thermo Electron GmbH, 2000.
  32. Bakirova E.R., Lazdin R.Yu., Chernova V.V. et al. // Butlerov messages. 2022. V. 70. No. 4. P. 59.
  33. Bakirova E.R., Lazdin R.Yu., Chernova V.V. et al. // Fundamental and applied problems of obtaining new materials: research, innovation and technology. Astrakhan: Federal State Budgetary Educational Institution of Higher Professional Education “AstSU”, 2022. P. 3.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Thermograms of PLA-1 (1, 3) and PLA-2 (2, 4, 5) samples. Curves 1, 2 refer to the original samples, curves 3-5 - to the samples obtained at temperatures in the plasticization/compression zone 190С/190С and pressure in the press of 10 000 kgf. The rate of temperature cooling in the press was 60 (3, 4) and 15С/min (5).

Baixar (113KB)
3. Fig. 2. Dependence of the elastic modulus of PLA-1 (a) and PLA-2 (b) samples on the value of pressure in the press for samples obtained with the cooling rate after pressing 10 (1), 15 (2) and 60С/min (3).

Baixar (78KB)
4. Fig. 3. Dependence of tensile stress of PLA-1 (a) and PLA-2 (b) specimens on the value of pressure in the press for specimens obtained with cooling rate after pressing 10 (1), 15 (2) and 60С/min (3).

Baixar (71KB)
5. Fig. 4. Dependence of breaking elongation of PLA-1 (a) and PLA-2 (b) specimens on the value of pressure in the press for specimens obtained with the cooling rate after pressing 10 (1), 15 (2) and 60С/min (3).

Baixar (63KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024