The effect of hypochlorite-induced fibrinogen oxidation on the protein structure, fibrin self-assembly and fibrinolysis

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article is dedicated to the structural-functional damage of fibrinogen treated with HOCl in the concentration range (10–100 µM). The MS/MS method detected 15 modified amino acid residues with a dose-dependent susceptibility to the oxidizing agent. Using turbidity measurements and confocal laser scanning microscopy, it has been shown that fibrinogen oxidation by 25–100 µM HOCl leads to the denser fibrin gel formation, as well as delayed polymerization onset and a decrease in the slope of the polymerization curve, presumably due to conformational changes of the protein. At lower HOCl concentration (10 µM), at least six amino acid residues were substantially modified (9–29%), but functionally such modified protein was not distinguishable from the native one. The detected amino acid residues are assumed to be ROS scavengers that prevent fibrinogen functions alteration.

Texto integral

Acesso é fechado

Sobre autores

L. Yurina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: lyu.yurina@gmail.com
Rússia, Moscow

A. Vasilyeva

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lyu.yurina@gmail.com
Rússia, Moscow

E. Evtushenko

Lomonosov Moscow State University

Email: lyu.yurina@gmail.com

Faculty of Chemistry

Rússia, Moscow

E. Gavrilina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lyu.yurina@gmail.com
Rússia, Moscow

S. Obydennyi

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation; Centre for Theoretical Problems of Physicochemical Pharmacology

Email: lyu.yurina@gmail.com
Rússia, Moscow; Moscow

I. Chabin

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation; Sechenov First Moscow State Medical University (Sechenov University)

Email: lyu.yurina@gmail.com
Rússia, Moscow; Moscow

M. Indeykina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lyu.yurina@gmail.com
Rússia, Moscow

A. Kononikhin

Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physics, Russian Academy of Sciences; Skolkovo Institute of Science and Technology

Email: lyu.yurina@gmail.com
Rússia, Moscow; Moscow

E. Nikolaev

Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physics, Russian Academy of Sciences; Skolkovo Institute of Science and Technology

Email: lyu.yurina@gmail.com
Rússia, Moscow; Moscow

M. Rosenfeld

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: lyu.yurina@gmail.com
Rússia, Moscow

Bibliografia

  1. K. M. Weigandt, N. White, D. Chung, et al., Biophys. J. 103 (11), 2399–2407 (2012). https://doi.org/10.1016/j.bpj.2012.10.036
  2. S. J. Klebanoff, J Leukocyte Biology. 77 (5), 598–625 (2005). https://doi.org/10.1189/jlb.1204697
  3. C. L. Hawkins, D. I. Pattison, M. J. Davies, Amino Acids. 5 (3–4), 259–274 (2003). https://doi.org/10.1007/s00726-003-0016-x
  4. L. V. Yurina, A. D. Vasilyeva, A. E. Bugrova, et al., Dokl. Biochem. Biophys. 484 (1), 37–41 (2019). https://doi.org/10.1134/S1607672919010101
  5. L. V. Yurina, A. D. Vasilyeva, M. I. Indeykina, et al., Free Radical Res. 53( 4), 430–455 (2019). https://doi.org/10.1080/10715762.2019.1600686
  6. A. D. Vasilieva, L. V. Yurina, D. Y. Azarova, et al., Russ. J. Phys. Chem. B 16, 118–122 (2022). https://doi.org/10.1134/S1990793122010316
  7. N. J. White, Y. Wang, X. Fu, et al., Free Rad. Biol. Med. 96, 181–189 (2016). https://doi.org/10.1016/j.freeradbiomed.2016.04.023
  8. W. H. Lau, N. J. White, T. W. Yeo, et al., Sci. Rep. 11(1), 15691 (2021). https://doi.org/10.1038/s41598-021-94401-3
  9. A. N. Shchegolikhin, A. D. Vasilyeva, L. V. Yurina, et al., Russ. J. Phys. Chem. B 15 (1), 123–130 (2021). https://doi.org/10.1134/S1990793121010279
  10. L. A. Wasserman, L. V. Yurina, A. D. Vasilieva, et al., Russ. J. Phys. Chem. B 15 (6), 1036 (2021). https://doi.org/10.1134/S1990793121060105
  11. E. S. Vasiliev, G. V. Karpov, D. K. Shartava, et al., Russ. J. Phys. Chem. B 16 (3), 388–394 (2022). https://doi.org/10.1134/S1990793122030113
  12. J. W. Weisel, C. Nagaswami, Biophys. J. 63 (1), 111–128 (1992). https://doi.org/10.1016/S0006-3495(92)81594-1
  13. J. Kaufmanova, J. Stikarova, A. Hlavackova, et al., Antioxidants 10 (6), 923 (2021). https://doi.org/10.3390/antiox10060923
  14. D. V. Sakharov, J. F. Nagelkerke, D. C. Rijken, J. Biol. Chem. 271 (4), 2133–2138 (1996). https://doi.org/10.1074/jbc.271.4.2133
  15. I. Pechik, J. Madrazo, M. W. Mosesson, et al., Proc. Natl. Acad. Sci. U.S.A. 101 (9), 2718–2723 (2004). https://doi.org/10.1073/pnas.0303440101
  16. J. W. Weisel, R. I. Litvinov, Fibrous Proteins: Struct. Mechan. Cham: Springer International Publishing, 82, 405–456 (2017). https://doi.org/10.1007/978-3-319-49674-0_13
  17. L. Medved, J. W. Weisel, Thromb Haemost. 122 (8), 1265–1278 (2022). https://doi.org/10.1055/a-1719-5584

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic representation of fibrinogen polypeptide chains with modification sites marked.

Baixar (140KB)
3. Fig. 2. Representative curves of thrombin-catalyzed fibrin polymerization (a) and fibrinolysis (b) at the following [HOCl] values ​​in μM: 1 – 0, 2 – 10, 3 – 25, 4 – 50, 5 – 100.

Baixar (151KB)
4. Fig. 3. Changes in the static structure of the fibrin clot (left column; at HOCl concentrations of 0, 10, 25, 50 μM) and the dynamics of plasmin(ogen) distribution during fibrinolysis (columns 2–4).

Baixar (191KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024