Process of magnetite dissolution in orthophosphoric and sulfuric acid solutions according to kinetic and electrochemical methods

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The kinetics of dissolution and the electrochemical features of the behavior of magnetite (at cathodic polarization) in solutions of sulfuric and orthophosphoric acids have been studied. Two independent experimental methods established that the rate and current of dissolution in H3PO4 are higher than in H2SO4. This pattern is explained on the basis of the stronger complexing properties of various kinds of phosphate anions in comparison with sulfate anions in solution with iron(III) ions. In the range of studied concentrations of orthophosphoric and sulfuric acids, Fe(II) and Fe(III) ions, the orders of magnitude for orthophosphoric and sulfuric acids are 1.3 ± 0.1; for iron(II) ions – 0.25 ± 0.1, for iron(III) ions – -0.25 ± 0.1

Sobre autores

A. Kuzin

Moscow Pedagogical State University; Bauman Moscow State Technical University

Autor responsável pela correspondência
Email: av.kuzin@mpgu.su
Rússia, Moscow; Moscow

A. Lobanov

Moscow Pedagogical State University

Email: av.kuzin@mpgu.su
Rússia, Moscow

V. Shelonzev

Omsk Humanitarian Academy

Email: av.kuzin@mpgu.su
Rússia, Omsk

E. Eliseeva

Bauman Moscow State Technical University

Email: av.kuzin@mpgu.su
Rússia, Moscow

A. Samadov

Tajik National University

Email: av.kuzin@mpgu.su
Tajiquistão, Dushanbe

Bibliografia

  1. Larionov V.S. Dis. ... candidate of technical sciences. M.: Mosk. State Evening. Metallurgist. In-t, 2001.
  2. Cherny S.A. Dis. ... candidate of economic sciences. М.: Mosk. State Un-t, 2009.
  3. Karpova S.G., Ol’khov A.A., Krivandin A.V. et al. // Polymer Sci. Ser. A. 2019. V. 61. P. 70. https://doi.org/10.1134/S0965545X19010140
  4. Lobanov A.V., Golubeva E.N., Zubanova E.M. et al. // High Energy Chem. V. 43. P. 384. https://doi.org/10.1134/S0018143909050099
  5. Gorichev I.G., Kutepov A.M., Gorichev A.I. et al. // Kinetics and mechanism of dissolution of iron oxides and hydroxides in acidic environments. M.: RUDN, 1999 [in Russian].
  6. Gorichev I.G., Mikha’lchenko I.S. // Protect. of metals. 1989. V. 25. № 4. P. 451.
  7. Marchenko Z. Photometric determination of elements. Chichester: Horwood, 1976.
  8. Delmon B. Introduction à la cinétique hétérogène. Paris: Éditions Technip, 1970.
  9. Rozovsky A.Ya. Heterogeneous chemical reactions. M.: Nauka, 1980. [in Russian].
  10. Ivanova O.V., Khorishko B.A., Kizim N.F. et al. // Advances in Chem. and Chem. Technol. 2016. V. 30. № 3 (172). P. 49.
  11. Kuzin A.V., Gorichev I.G., Shelontsev V.A. et al. // Moscow University Chem. Bulletin. 2021. V. 76. №. 6. C. 398. https://doi.org/10.3103/S0027131421060055
  12. Avdeev Ya.G., Andreeva T.E., Panova A.V. et al. // Intern. J. Corrosion Scale Inhibition. 2020. Т. 9. № 2. C. 538. https://doi.org/10.17675/2305-6894-2020-9-2-9
  13. Panova A.V., Avdeev Ya.G., Andreeva T.E. et al. // Prot. Metals Phys. Chem. Surf. 2021. Т. 57. № 7. C. 1289. https://doi.org/10.1134/S2070205121070133
  14. Avdeev Ya.G., Andreeva T.E. et al. // Advances in Chem. and Chem. Technology. 2018. V. 32. № 13 (209). P. 63.
  15. Kuzin A.V., Gorichev I.G., Batrakov V.V. et al. // Russ. Metal. (Metally). 2014. V. 2014. № 1. P. 33. https://doi.org/10.1134/S003602951401008X
  16. Lukovtsev P.D. Dis. ... Doctors of Chem. Sci. М.: The Institute of Physical Chem. and Electrochem. of the USSR, 1952.
  17. Lukovtsev P.D. // Soviet Electrochem. 1968. V. 4. № 4. 337.
  18. Fedorockova A., Raschman P. // Chemicke Listy. 2006. V. 100. P. 337.
  19. Denisov E.T. Rate constants of homolytic liquid-phase reactions. M.: Nauka, 1971 [in Russian].
  20. Alymov M.I., Seplyarskii B.S., Vadchenko S.G. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 352. https://doi.org/10.1134/S1990793121020135
  21. Yuriev B.P., Dudko V.A. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 31. https://doi.org/10.1134/S1990793122010171
  22. Gromov V.F., Ikim M.I., Gerasimov G.N. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 138. https://doi.org/10.1134/S1990793122010055
  23. Yuriev B.P., Dudko V.A. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 60. https://doi.org/10.1134/S199079312301030X

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024