Pecularities of DNA binding to two-dimensional crystals of bacterial protein Dps from Escherichia coli based on molecular dynamics data
- Authors: Tereshkin E.V.1, Tereshkina К.B.1, Loiko N.G.2, Kovalenko V.V.1, Krupyanskii Y.F.1
-
Affiliations:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Issue: Vol 43, No 12 (2024)
- Pages: 84-94
- Section: Chemical physics of biological processes
- URL: https://vestnikugrasu.org/0207-401X/article/view/684180
- DOI: https://doi.org/10.31857/S0207401X24120086
- ID: 684180
Cite item
Abstract
In this work, using coarse-grained molecular modeling methods, the interactions of DNA-binding protein from starved cells (Dps) of the bacterium Escherichia coli with DNA sections of various lengths and composition were investigated. The binding features in two-dimensional crystals of the Dps protein were studied. Using free energy search methods – thermodynamic integration and linear interaction energy – the most favorable conditions for the binding of DNA and Dps were determined.
About the authors
E. V. Tereshkin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Author for correspondence.
Email: ramm@mail.ru
Russian Federation, Moscow
К. B. Tereshkina
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: ramm@mail.ru
Russian Federation, Moscow
N. G. Loiko
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: ramm@mail.ru
Russian Federation, Moscow
V. V. Kovalenko
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: ramm@mail.ru
Russian Federation, Moscow
Y. F. Krupyanskii
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: ramm@mail.ru
Russian Federation, Moscow
References
- A.G. Tkachenko. Molecular Mechanisms of Stress Responses in Microorganisms. Yekaterinburg: Ural Branch of RAS (2012). [in Russian].
- H.M. Amemiya, J. Schroeder, P.L. Freddolino. Transcription 12, 182 (2021). https://doi.org/10.1080/21541264.2021.1973865
- A. Minsky, E. Shimoni, D. Frenkiel-Krispin. Nat Rev Mol Cell Biol. 3, 50 (2002). https://doi.org/10.1038/nrm700
- N. Loiko, Y. Danilova, A. Moiseenko et al. PLoS One 15, e0231562 (2020). https://doi.org/10.1371/journal.pone.0231562
- Y.F. Krupyanskii. Russian Journal of Physical Chemistry B. 15, 326 (2021). https://doi.org/10.31857/S0207401X21030079
- Y.F. Krupyanskii, V.V. Kovalenko, N.G. Loiko et al. Biophysics 67(4), 638 (2022). https://doi.org/10.31857/S0006302922040020
- M. Almirón, A. J. Link, D. Furlong, R. Kolter. Genes Dev. 612, 2646 (1992). https://doi.org/10.1101/gad.6.12b.2646
- V.O. Karas, I. Westerlaken, A.S. Meyer. J. Bacteriol. 197, 3206 (2015). https://doi.org/10.1128/jb.00650-15
- K. Orban, S.E. Finkel. J. Bacteriol. 204, e00036-22 (2022). https://doi.org/10.1128/jb.00036-22
- R.A. Grant, D.J. Filman, S.E. Finkel et al. Nat. Struct. Biol. 5, 294 (1998). https://doi.org/10.1038/nsb0498-294
- D. Frenkiel-Krispin and A. Minsky. J. Struct. Biol. 156, 311 (2006). https://doi.org/10.1016/j.jsb.2006.05.014
- N.G. Loiko, N.E. Suzina, V.S. Soina et al. Microbiology 86, 714 (2017). https://www.elibrary.ru/item.asp?id=35516020
- V. Kovalenko, A. Popov, G. Santoni et al. Acta Cryst. F76, 568 (2020). https://doi.org/10.1107/S2053230X20012571
- D.O. Sinitsyn, N.G. Loiko, S.K. Gularyan et al. Russian Journal of Physical Chemistry B. 11, 833 (2017). https://doi.org/10.1134%2FS1990793117050128
- A. Moiseenko, N. Loiko, K. Tereshkina et al. Biochemical and Biophysical Research Communications 517, 463 (2019). https://doi.org/10.1016%2Fj.bbrc.2019.07.103
- P. Ceci, S. Cellai, E. Falvo et al. Nucleic Acids Res. 32(19), 5935 (2004). https://doi.org/10.1093/nar/gkh915
- A. Minsky, S. G. Wolf, D. Frenkiel et al. Nature 400, 83 (1999). https://doi.org/10.1038/21918.
- E.V. Tereshkin, K.B. Tereshkina and Y.F. Krupyanskii. JPCS 2056(1), 012016 (2021). http://dx.doi.org/10.1088/1742-6596/2056/1/012016
- N.G. Loiko, E.V. Tereshkin, V.V. Kovalenko et al. Microbiology 92(1), S78 (2023). https://doi.org/10.1134/S0026261723603640
- E. Tereshkin, K. Tereshkina, N. Loiko et al. J Biomol Struct Dyn. 37, 2600 (2018). http://dx.doi.org/10.1080/07391102.2018.1492458
- E.V. Tereshkin, K.B. Tereshkina, V.V. Kovalenko et al. Russian Journal of Physical Chemistry B. 13(5), 769 (2019). http://dx.doi.org/10.1134/S199079311905021X
- E. Tereshkin, K. Tereshkina, N. Loiko et al. Russian Journal of Physical Chemistry B. 17, 608 (2023). http://dx.doi.org/10.1134/S1990793123030132
- J.J. Uusitalo, H.I. Ing´olfsson, P. Akhshi, et al., Journal of chemical theory and computation 11, 3932 (2015). https://doi.org/10.1021/acs.jctc.5b00286
- E.V. Tereshkin, K.B. Tereshkina, Y.F. Krupyanskii. Supercomputing Frontiers and Innovations 9, 33 (2022). https://doi.org/10.14529/jsfi220203
- S.S. Antipov, M.N. Tutukina, E.V. Preobrazhenskaya. et al., PLoS One 12, e0182800 (2017). https://doi.org/10.1371/journal.pone.0182800
- B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl. Theory Comput. 4, 435 (2008). https://doi.org/10.1021/ct700301q
- K.R. Hadley, C. McCabe. Mol. Simul. 38, 671 (2012). https://doi.org/10.1080/08927022.2012.671942
- G. Bussi, D. Donadio, M. Parrinello. J Chem Phys. 126(1), 014101 (2007). https://doi.org/10.1063/1.2408420.
- J. Aqvist, J. Marelius. Comb. Chem. High Throughput Screening. 4, 613 (2001). https://doi.org/10.2174/1386207013330661
- A. Amadei, A.B. Linssen, H.J. Berendsen. Proteins. 17(4), 412 (1993). https://doi.org/10.1002/prot.340170408
- T.A. Azam, A. Ishihama. J Biol Chem. 274(46), 33105 (1999). https://doi.org/10.1074/jbc.274.46.33105.
- L. Jen-Jacobson. Biopolymers. 44, 153 (1997). https://doi.org/10.1002/(SICI)1097-0282(1997) 44:2<153::AID-BIP4>3.0.CO;2-U
- A.A. Anashkina. Biophys Rev. 15, 1007 (2023). https://doi.org/10.1007/s12551-023-01137-7
- J.L. Miller, P.A. Kollman. Physical Chemistry 100(20), 8587 (1996). https://doi.org/10.1021/jp9605358
Supplementary files
