Photogeneration of charge carriers in organic solar cells. The role of nonequilibrium states for electrons and holes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of this study is to consider a photogeneration of charge carriers in nano-structured blends of the donor (D) and acceptor (A) materials. Upon optical excitation photons absorbed in one of these materials produce intramolecular excitons which can diffuse to the D–A interface and form at the interface the interfacial CT states. The interfacial CT state dissociates into a geminate pair of the non-equilibrium mobile electron and hole. In the present study, an empirical model describing thermalization of the non-equilibrium charges within the Coulomb well is proposed. Efficiency of the interfacial CT state dissociation into a pair of free charges is found as a function of the electric field applied, effective temperature and diffusion length of non-equilibrium electron-hole pairs.

About the authors

L. V. Lukin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: leonid.v.lukin@gmail.com
Russian Federation, Moscow

References

  1. J.-L. Brédas, J.E. Norton, J. Cornil, V. Coropceany. Acc. Chem. Res. 42, 1691 (2009). https://doi.org/10.1021/ar900099h
  2. T.M. Clarke, J.R. Durrant. Chem. Rev. 110, 6736 (2010). https://doi.org/10.1021/cr900271s
  3. A.Yu. Sosorev, D.Yu. Godovsky, D.Yu. Paraschuk. Phys. Chem. Chem. Phys. 20, 3658 (2018). https://doi.org/10.1039/c7cp06158g
  4. L.V. Lukin. Russian J. Phys. Chem. B: Focus on Physics, 17, 1300 (2023). https://doi.org/10.1134/S1990793123060180
  5. K. Vandewal. Annu. Rev. Phys. Chem. 67, 113 (2016). https://doi.org/10.1146/annurev-physchem-040215- 112144
  6. A.E. Jailaubekov, A.P. Willard, J.R. Tritsch, W.-L. Chan et al. Nature Mater. 12, 66 (2013). https://doi.org/10.1038/NMAT3500
  7. K. Chen, A.J. Barker, M.E. Reish, K.C. Gordon, J.M. Hodgkiss. J. Am. Chem. Soc. 135, 18502 (2013). https://doi.org/10.1021/ja408235h
  8. G. Grancini, M. Maiuri, D. Fazzi, A. Petrozza, H.-J. Egelhaaf et al. Nature Mater. 12, 29 (2013). https://doi.org/10.1038/NMAT3502
  9. A.A. Bakulin, A. Rao, V.G. Pavelyev, P.H.M. van Loosdrecht, M.S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R.H. Friend. Science, 335, 1340 (2012).
  10. H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, L. Mcculloch, J. Nelson, D.D.C. Bradley, J.R. Durrant, J. Am. Chem. Soc. 130, 3030 (2008).
  11. S. Gélinas, A. Rao, A. Kumar, S.L. Smith, A.W. Chin, J. Clark, T.S.van der Poll, G.C. Bazan, R.H. Friend. Science, 343, 512 (2014).
  12. A.C. Jakowetz, M.L. Böhm, J. Zhang, A. Sadhanala, S. Huettner, A.A. Bakulin, A. Rao, R.H. Friend. J. Am. Chem. Soc. 138, 11672 (2016). https://doi.org/10.1021/jacs.6b05131
  13. K. Vandewal, S. Albrecht, E.T. Hoke, K.R. Graham, J. Widmer et al. Nature Mater. 13, 63 (2014).
  14. J.D. Servaites, B.M. Savoie, J.B. Brink, T.J. Marks, M.A. Ratner. Energy Environ. Sci. 5, 8343 (2012).
  15. M. Hilczer, M. Tachiya. J. Phys. Chem. C, 114, 6808 (2010).
  16. V.A. Trukhanov, V.V. Bruevich, D.Y. Paraschuk. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 205318 (2011).
  17. M. Wiemer, A.V. Nenashev, F. Jansson, S.D. Baranovskii. Appl. Phys. Lett. 99, 013302 (2011). https://doi.org/10.1063/1.3607481
  18. S.D. Baranovskii, M. Wiemer, A.V. Nenashev, F. Jansson, F. Gebhard. J. Phys. Chem. Lett. 3, 1214 (2012). https://doi.org/10.1021/jz300123k
  19. S. Tscheuschner, H. Bässler, K. Huber, A. Köhler. J. Phys. Chem. B, 119, 10359 (2015). https://doi.org/10.1021/acs.jpcb.5b05138
  20. L.V. Lukin. Chem. Phys. 551, 111327 (2021). https://doi.org/10.1016/j.chemphys.2021.111327
  21. A. Devižis, A. Serbenta, K. Meerholz, D. Hertel, V. Gulbinas. Phys. Rev. Lett. 103, 027404 (2009). https://doi.org/10.1103/PhysRevLett.103.027404
  22. D.A. Vithanage, A. Devižis, V. Abramavičius, Y. Infahsaeng, D. Abramavičius, R.C.I. MacKenzie, P.E. Keivanidis, A. Yartsev, D. Hertel, J. Nelson, V. Sundström, V. Gulbinas. Nature Commun. 4, 2334 (2013). https://doi.org/10.1038/ncomms3334
  23. A. Melianas, V. Pranculis, Y. Xia, N. Felekidis, V. Gulbinas, M. Kemerink. Adv. Energy Mater. 7, 1602143 (2017).
  24. S. Baranovski, O. Rubel, in: S. Baranovski (Ed.) Charge Transport in Disordered Solids with Application in Electronics, John Wiley & Sons, Chichester, 2006, Chapter 6. P. 221–266.
  25. L. Onsager. Phys. Rev. 54, 554 (1938).
  26. K. Seki, M. Wojcik. J. Phys. Chem. C, 121, 3632 (2017).
  27. K.M. Hong, J. Noolandi. J. Chem. Phys. 68, 5163 (1978).
  28. D. Mauzerall, S.G. Ballard. Annu. Rev. Phys. Chem. 33, 377 (1982).
  29. H.C.F. Martens, J.N. Huiberts, P.W.M. Blom. Appl. Phys. Letters. 77, 1852 (2000). https://doi.org/10.1063/1.1311599
  30. A. Kumar, P.K. Bhatnagar, P.C. Mathur, M. Husain, S. Sengupta, J. Kumar. J. Appl. Phys. 98, 024502 (2005). https://doi.org/10.1063/1.1968445
  31. K.M. Coakley, M.D. McGehee. Chem. Mater. 16, 4533 (2004). https://doi.org/10.1021/cm049654n
  32. R. Noriega, J. Rivnay, K. Vandewal, F.P.V. Koch, N. Stingelin, P. Smith, M.F. Toney, A. Salleo. Nature Mater. 12, 1038 (2013).
  33. A. Devižis, D. Hertel, K. Meerholz, V. Gulbinas, J.-E. Moser. Organic Electronics, 15, 3729 (2014).
  34. V.D. Mihailetchi, J.K.J. van Duren, P.W.M. Blom, J.C. Hummelen, R.A.J. Janssen, J.M. Kroon, M.T. Rispens, W.J.H. Verhees, M.M. Wienk. Advan. Funct. Mater. 13, 43 (2003).
  35. S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, Y. Iwasa, Sci. Technol. Adv. Mater. 4, 371 (2003).
  36. J. Noolandi, K.M. Hong. J. Chem. Phys. 70, 3230 (1979).
  37. A.A. Bakulin, S.D. Dimitrov, A. Rao, P.C.Y. Chow, C.B. Nielsen, B.C. Schroeder, I. McCulloch, H.J. Bakker, J.R. Durrant, R.H. Friend. J. Phys. Chem. Lett. 4, 209 (2013). https://doi.org/10.1021/jz301883y
  38. A.A. Bakulin, C. Silva, E. Vella. J. Phys. Chem. Lett. 7, 250 (2016). https://doi.org/10.1021/acs.jpclett.5b01955
  39. Y. Dong, H. Cha, J. Zhang, E. Pastor, P.S. Tuladhar, I. McCulloch, J.R. Durrant, A.A. Bakulin. J. Chem. Phys. 150, 104704 (2019). https://doi.org/10.1063/1.5079285
  40. T. Hahn, J. Geiger, X. Blase, I. Duchemin, D. Niedzialek, S. Tscheuschner, D. Beljonne, H. Bässler, A. Köhler. Adv. Funct. Mater. 25, 1287 (2015). https://doi.org/10.1002/adfm.201403784
  41. G.V. Simbirtseva, N.P. Piven’, S.D. Babenko. Russ. J. Phys. Chem. B: Focus on Physics, 16, 323 (2022). https://doi.org/10.1134/S1990793122020233
  42. G.N. Gerasimov, V.F. Gromov, M.I. Ikim, L.I. Trakhtenberg. Russ. J. Phys. Chem. B: Focus on Physics, 15, 1072 (2021). https://doi.org/10.1134/S1990793121060038
  43. G.V. Simbirtseva, S.D. Babenko. Russ. J. Phys. Chem. B: Focus on Physics, 17, 1309 (2023). https://doi.org/10.1134/S1990793123060222
  44. R.A. Marcus and N. Sutin. Biochim. Biophys. Acta Rev. Bioenergetics, 811, 265 (1985). https://doi.org/10.1016/0304-4173(85)90014-X
  45. R.M. Williams, J.M. Zwier, J.W. Verhoeven. J. Am. Chem. Soc. 117, 4093 (1995). https://doi.org/10.1021/ja00119a025
  46. С. Leng, H. Qin, Y. Si, Y. Zhao. J. Phys. Chem. C, 118, 1843 (2014).
  47. H. Yan, S. Chen, M. Lu, X. Zhu, Y. Li, D. Wu, Y. Tu, X. Zhua. Mater. Horiz. 1, 247 (2014). https://doi.org/10.1039/C3MH00105A
  48. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J.V. Manca. Phys. Rev. B, 81, 125204 (2010). https://doi.org/10.1103/PhysRevB.81.125204
  49. T. Unger, S. Wedler, F.J. Kahle, U. Scherf, H. Bässler, A. Köhler. J. Phys. Chem. C, 121, 22739 (2017). https://doi.org/10.1021/acs.jpcc.7b09213
  50. Y. Wang, L.T. Cheng. J. Phys. Chem. 96, 1530 (1992).
  51. Y. Wang, J. Phys. Chem. 96, 764 (1992).
  52. A.J. Ward , A. Ruseckas , M.M. Kareem , B. Ebenhoch, L.A. Serrano, M. Al-Eid, B. Fitzpatrick, V.M. Rotello, G. Cooke, I.D.W. Samuel. Advan. Mater. 27, 2496 (2015). https://doi.org/10.1002/adma.201405623
  53. B.P. Karsten, R.K.M. Bouwer, J.C. Hummelen, R.M. Williams, R.A.J. Janssen. Photochem. Photobiol. Sci. 9, 1055 (2010). https://doi.org/10.1039/c0pp00098a
  54. D. Veldman, S.M.A. Chopin, S.C.J. Meskers, R.A.J. Janssen. J. Phys. Chem. A, 112, 8617 (2008). https://doi.org/10.1021/jp805949r
  55. T. Liu, D.L. Cheung, A. Troisi. Phys. Chem. Chem. Phys. 13, 21461 (2011). https://doi.org/10.1039/C1CP23084K

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences