Quantum chemical simulation of reactions in a nanogold–oxygen–hydrogen system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Quantum chemical calculations are performed to determine the heats of adsorption of H2 and O2 on the simplest electrically neutral Au3 cluster or the negatively charged Au3- cluster. A detailed mechanism is proposed for reaction between O2 and (Au3H2) adsorbate, and the energy budget for the elementary reactions producing (Au3O)- and H2O is calculated. The energy budget is also calculated for the elementary steps involved in the reaction between (Au3O)- and H2 producing Au3- and H2O. Based on the calculated results, an explanation is proposed for the experimental data on interaction of hydrogen and oxygen with gold nanoparticles deposited on pyrolytic graphite. Since the gold nanoparticles located on graphite are negatively charged, the calculations are performed accordingly for negatively charged gold-containing particles.

Full Text

Restricted Access

About the authors

M. V. Grishin

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Russian Federation, Moscow, 119991

D. T. Baimukhambetova

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Russian Federation, Moscow, 119991

A. K. Gatin

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Russian Federation, Moscow, 119991

S. Yu. Sarvadii

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Russian Federation, Moscow, 119991

V. G. Slutskii

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: slutsky@chph.ras.ru
Russian Federation, Moscow, 119991

V. А. Kharitonov

Semenov Research Center for Chemical Physics, Russian Academy of Sciences

Email: slutsky@chph.ras.ru
Russian Federation, Moscow, 119991

References

  1. Wittstock, V. Zielasek, J. Biener, C.M. Friend, M. Baumer. Science. 327, 319(2010). https://doi.org/10.1126/science.1183591
  2. Raptis, H. Garcia, M. Stratakis. Angew. Chem. Int. Ed. 48, 3133(2009). https://doi.org/10.1002/anie.200805838
  3. S.F.R. Taylor, J. Sa, C. Hardacre C. ChemCatChem. 3 119 (2011). https://doi.org/10.1002/cctc.201000337
  4. Y. Zhu, L. Tian, Z. Jiang, S. Pei, S. Xie, M. Qiao, K. Fan. J. Catal. 281, 106(2011). https://doi.org/10.1016/j.jcat.2011.04.007
  5. Corma, P. Serna. Science. 313, 332(2006). https://doi.org/10.1126/science.1128383
  6. A.K. Gatin, M.V. Grishin, N.V. Dokhlikova, A.A. Kirsankin, N.N. Kolchenko, V.A. Kharitonov, B.R. Shub, S.A. Gurevich, V.M. Kozhevin, D.A. Yavsin, T.N. Rostovshchikova. Russian Chemical Bulletin. 63(8) 1696(2014). https://doi.org/10.1007/s11172-014-0655-y
  7. V.M. Kozhevin, D.A. Yavsin, V.M. Kouznetsov, V.M. Busov, V.M. Mikushkin, S.Yu. Nikonov, S.A. Gurevich, A. Kolobov. J. Vac. Sci. Techn. B. 18, 1402(2000). https://doi.org/10.1116/1.591393
  8. M.V. Grishin, A. K.Gatin, V.G. Slutskii, A.S. Fedotov, V.A. Kharitonov, B.R Shub. Russian Journal of Physical Chemistry B. 16(3), 395(2022). https://doi.org/10.1134/s1990793122030150
  9. M.V. Grishin, A. K.Gatin, V.G. Slutskii, A.S. Fedotov, V.A. Kharitonov, B.R Shub. Russian Journal of Physical Chemistry B. 17(1), 49(2023). https://doi.org/10.1134/s1990793123010050
  10. M.V. Grishin, A.K. Gatin, V.A. Kharitonov, S.A. Ozerin, S.Yu. Sarvadii, B.R. Shub.// Russian Journal of Physical Chemistry B. 16(2), 211(2022). https://doi.org/10.1134/S199079312232001X
  11. N.V. Dokhlikova, A.K. Gatin, S.Yu. Sarvadiy, S.A. Ozerin, E.I. Rudenko, M.V. Grishin, B.R. Shub. Russian Journal of Physical Chemistry B. 16(4), 722(2022). https://doi.org/10.1134/s1990793122040042
  12. T. Ozaki. Phys. Rev. B. 67, 155108(2003). https://doi.org/10.1103/PhysRevB.67.155108
  13. T. Ozaki, H. Kino. Phys. Rev. B. 69, 195113(2004). https://doi.org/10.1103/PhysRevB.69.195113
  14. L.N. Rosanov. Vakuumnaya Tehnika, 2-nd Edition. Moscow, Vysshaya Shkola, 1990. 220 P. [in Russian].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structures of Au3 and Au3-, as well as the structures of electroneutral and negatively charged adsorbates Au3H2 and (Au3H2)- isomers. Gray labels are Au, black labels are H. Distances are in Å. The heats of adsorption in kcal/mol are given in square brackets.

Download (68KB)
3. Fig. 2. Structures of the electroneutral and negatively charged adsorbate isomers Au3O2 and (Au3O2)-. Gray labels are Au, white labels are O. Distances are in Å. The heats of adsorption in kcal/mol are given in square brackets.

Download (117KB)
4. Fig. 3. Mechanism of interaction of stable negatively charged adsorbate (H-Au3-H)- with two O2 molecules. Gray labels are Au, white labels are O, and black labels are H. Distances are in Å. The heats of elementary reactions in kcal/mol are given in square brackets.

Download (124KB)
5. Fig. 4. Mechanism of interaction of negatively charged oxide (Au3O)- with H2 molecule. Gray labels are Au, white labels are O, and black labels are H. Distances are in Å. The heats of elementary reactions in kcal/mol are given in square brackets.

Download (119KB)

Copyright (c) 2025 Russian Academy of Sciences