Kinetics the proliferation of correlations in multiple quantum NMR spectroscopy

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is shown that the number of spins in clusters of coherently correlated states arising under conditions of multiplequantum NMR – spectroscopy in a solid increases exponentially with time. The Smolukhovsky equation was used to study the above processes. Possible processes of cluster degradation were not taken into account. The results obtained are in good agreement with the experimental data, at least up to about 105 spins in the cluster.

全文:

受限制的访问

作者简介

V. Bodneva

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: ya-andylun2012@yandex.ru
俄罗斯联邦, Moscow

A. Vetchinkin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: ya-andylun2012@yandex.ru
俄罗斯联邦, Moscow

B. Lidskiy

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: ya-andylun2012@yandex.ru
俄罗斯联邦, Moscow

A. Lundin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ya-andylun2012@yandex.ru
俄罗斯联邦, Moscow

S. Umanskii

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: ya-andylun2012@yandex.ru
俄罗斯联邦, Moscow

Y. Chaikina

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: ya-andylun2012@yandex.ru
俄罗斯联邦, Moscow

A. Shushin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: ya-andylun2012@yandex.ru
俄罗斯联邦, Moscow

参考

  1. U. Haeberlen. High Resolution NMR in Solids. Selective Averaging.(Academic Press, New York. San Francisco. London. (1976)). M. Mehring. High Resolution NMR Spectroscopy in Solids. (Springer-Verlag, Berlin. Heidelberg. New York. (1976)).
  2. Yu.N.Ivanov, B.N. Provotorov, E.B. Fel’dman. Zh. Eksp. Teor. Fiz. 75, 1847 (1978).
  3. L.N. Erofeev, B.A. Shumm, G.B. Manelis. Zh. Eksp. Teor. Fiz., 75, 1837 (1978).
  4. J. Baum, M. Munowitz, A.N. Garroway, A. Pines. J. Chem. Phys., 83, 2015, (1985). https://doi.org/10.1063/1.449344
  5. M. Munowitz, A.Pines. Adv.Chem.Phys., 66, 1, (1987).
  6. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of NMR in One and TwoDimensions (Clarendon, Oxford, 1987).
  7. P.-K. Wang, J.-P. Ansermet, S. L. Rudaz, Z. Wang, S. Shore. Ch. P. Slichter, J.M. Sinfelt, Science 234, 35 (1986). https://doi.org/10.1126/science.234.4772.3
  8. J. Baumand, A. Pines, J. Am. Chem. Soc. 108, 7447 (1986).
  9. S.I. Doronin, A.V. Fedorova, E.B. Fel’dman, and A.I. Zenchuk, J. Chem. Phys. 131,104109 (2009). https://doi.org/10.1063/1.3231692
  10. https://www.nobelprize.org/prizes/chemistry/2002/8873-the-nobel-prize-in-chemistry-2002-2002-4
  11. J. Preskill, Lecture Notes for Physics, Vol. 229: Quantum Information and Computation (California Inst. Technol., (1998))
  12. V.E. Zobov, A.A. Lundin J. Exp. Theor. Phys.,131, 273 (2020). https://doi.org/10.1134/S1063776120060096
  13. F.D. Domínguez, M.C. Rodríguez, R. Kaiser, D. Suter, G.A. Álvarez, Phys. Rev.A, 104, 012402, (2021). https://doi.org/10.1103/PhysRevA.104.012402
  14. V.E. Zobov, A.A. Lundin. J. Exp. Theor. Phys.,135, 752 (2022) https://doi.org/10.1134/S1063776122110139 .
  15. V.E. Zobov, A.A. Lundin. J. Exp. Theor. Phys., 103, 904 (2006). https://doi.org/10.1134/S1063776106120089
  16. V.E. Zobov, A.A. Lundin. Russ. J. Phys. Chem., B 2, 676 (2008).
  17. H.G. Krojanski, D. Suter, Phys. Rev. Lett. 93, 090501 (2004). https://doi.org/10.1103/PhysRevLett.93.090501
  18. H.G. Krojanski, D. Suter, Phys.Rev.Lett.,97, 150503 (2006). https://doi.org/10.1103/PhysRevLett.97.150503 .
  19. H.G. Krojanski, D. Suter. Phys. Rev. A, 74, 062319 (2006). https://doi.org/10.1103/PhysRevA.74.062319
  20. G. Cho, P. Cappelaro, D.G. Cory, C. Ramanathan, Phys. Rev. B 74, 224434, (2006). https://doi.org/10.1103/PhysRevB.74.224434
  21. M.V. Smoluchowski. Phys. Z., 17, 585, (1916).
  22. B.M. Smirnov. Fyzika Fraktal’nykh klasterov, (Moskva, Nauka (1991)), [in Russian].
  23. A. Abragam. The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961), Chs. 4,6,10.
  24. R.H. Schneder, H. Schmiedel. Phys. Lett. A, 30, 298 (1969). https://doi.org/10.1016/0375-9601(69)91005-6 .
  25. W.K. Rhim, A. Pines, J.S. Waugh. Phys.Rev.B, 3, 684 (1971). https://doi.org/10.1103/PhysRevB.3.684 .
  26. P.L. Krapivsky, S. Redner, E. Ben-Naim. A Kinetik View of Statistical Physics, (Cambridge University Press (2010)). ISBN-13 978-0-521-85103-9
  27. Proceedings of the Sixth Trieste International Symposiumon Fractals in Physics. Fractals In Physics, (ICTP, Trieste, Italy, July 9-12, (1985)).
  28. D.H. Levy, K.K. Gleason. J. Phys. Chem., 96, 8126, (1992).
  29. V.L. Bodneva, A. A. Lundin. JETP, 116, 1050, (2013). https://doi.org/10.1134/S1063776113060022 .
  30. G.A. Álvarez, D. Suter. Phys. Rev. Lett., 104, 230403 (2010). https://doi.org/10.1103/PhysRevLett.104.230403 .
  31. G.A. Álvarez, D. Suter, R. Kaiser. Science, 349, 846 (2015). https://doi.org/10.1126/science.1261160 .
  32. P.W. Anderson. Basic Notions of Condensed Matter Physics, (The Benjamin/Cummings Publishing Company, Inc. Advanced Book Program, (1984)).
  33. A.A. Lundin, V.E. Zobov. Russ. J. Phys. Chem. B, 15, № 5, 839 (2021). https://doi.org/10.1134/S1990793121050079
  34. S.Y. Umanskii et al. Russ. J. of Phys. Chem. B, 17, 346 (2023). https://doi.org/10.1134/S199079312302032X
  35. V.Ye. Kirillov et al. Russ. J. of Phys. Chem. B, 17, № 6, 1346 (2023). https://doi.org/10.31857/S0207401X23110043
  36. Ye.V. Morozov, A.V. Il’ichyov, V.M. Buznik. Russ. J. of Phys. Chem. B, 17 № 6, 1361 (2023). https://doi.org/10.31857/S0207401X23110067
  37. A.I. Shushin, S.Ya. Umanskii, Yu.A. Chaikina. Russ. J. Phys. Chem. B, 17, № 6, 1403, (2023). https://doi.org/10.1134/S1990793123040176.
  38. V.A. Ditkin, A.P. Prudnikov. Integral’nye Preobrazovanita i Operatsionnoe Ischislenie, (Izd-vo Fyz.-Mat. Literatury (1961)).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025