Thermodynamic assessment of conversion modes of acid gases/methane mixture for syngas production

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A thermodynamic assessment of the modes of non-catalytic conversion of acid gases and methane to produce syngas was carried out. The air and steam-air conversion modes of a mixture of hydrogen sulfide, carbon dioxide and methane were studied. Model compositions of gases with different contents of hydrogen sulfide (10, 20 and 30 vol.%) and methane (depending on the stoichiometric fuel excess coefficient) were considered. It has been shown that high temperature leads up the conversion of reagents and the syngas formation. With an increase in the amount of methane, the yield of hydrogen increased over the entire temperature range under consideration (1273–1873 K), but conversion rate of hydrogen sulfide decreased significantly. Increasing the amount of hydrogen sulfide in the initial mixture reduces the yield of synthesis gas. Adding water vapor in amounts up to 5 vol.% leads to an increase in the syngas yield and the [H2]/[CO] ratio. The maximum ratio H2/CO = 2.1 was achieved during air conversion of a mixture with 10 vol.% hydrogen sulfide with the same amount of CO2 with a stoichiometric fuel excess ratio of 10 and T = 1873 K.

Full Text

Restricted Access

About the authors

M. V. Tsvetkov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: tsvetkov@icp.ac.ru
Russian Federation, Chernogolovka

A. Yu. Zaichenko

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: tsvetkov@icp.ac.ru
Russian Federation, Chernogolovka

D. N. Podlesniy

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: tsvetkov@icp.ac.ru
Russian Federation, Chernogolovka

Yu. Yu. Tsvetkova

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: tsvetkov@icp.ac.ru
Russian Federation, Chernogolovka

M. V. Salganskaya

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: tsvetkov@icp.ac.ru
Russian Federation, Chernogolovka

V. M. Kislov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: tsvetkov@icp.ac.ru
Russian Federation, Chernogolovka

E. A. Salgansky

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: tsvetkov@icp.ac.ru
Russian Federation, Chernogolovka

References

  1. Y.H. Chan, S.S.M. Lock, M.K. Wong et al. Environ. Pollut. 314, 120219 (2022). https://doi.org/10.1016/j.envpol.2022.120219
  2. Y.H. Chan, A.C.M. Loy, K.W. Cheah et al. Chem. Eng. J. 458, 141398 (2023). https://doi.org/10.1016/j.cej.2023.141398
  3. A. Raj, S. Ibrahim, A. Jagannath. Prog. Energy Combust. Sci. 80, 100848 (2020). https://doi.org/10.1016/j.pecs.2020.100848
  4. I.A. Abdalsamed, I.A. Amar, A.A. Al-abbasi et al. Scientific J. Faculty Sci.-Sirte Univ. 3 (1), 158 (2023). https://doi.org/10.37375/sjfssu.v3i1.74
  5. A.G. Georgiadis, N.D. Charisiou, M.A. Goula. Catalysts. 10 (5), 521 (2020). https://doi.org/10.3390/catal10050521
  6. A. K. Gupta, S. Ibrahim, A. Al Shoaibi. Prog. Energy Combust. Sci. 54, 65 (2016). https://doi.org/10.1016/j.pecs.2015.11.001
  7. A.N. Zagoruiko, V.V. Shinkarev, S.V. Vanag, G.A. Bukhtiyarova. Catal. Ind. S1, 52 (2010). https://doi.org/10.1134/S2070050410040082
  8. S. Guo, F. Zhou, J. Shan et al. Fuel. 367, 131242 (2024). https://doi.org/10.1016/j.fuel.2024.131242
  9. A.Z. Ardeh, S. Fathi, F.Z. A. Ashtiani. Fouladitajar Sep. Purif. Technol. 338, 126173 (2024). https://doi.org/10.1016/j.seppur.2023.126173
  10. S.M. Ali, I.I. Alkhatib, A. AlHajaj, L.F. Vega. J. Clean. Prod. 428, 139475 (2023). https://doi.org/10.1016/j.jclepro.2023.139475
  11. E. Spatolisano, G. De Guido, L.A. Pellegrini et al. J. Clean. Prod. 330, 129889 (2022). https://doi.org/10.1016/j.jclepro.2021.129889
  12. I.V. Sedov, V.S. Arutyunov, M.V. Tsvetkov et al. Eurasian Chem.-Technol. J. 24 (2), 157 (2022). https://doi.org/10.18321/ectj1328
  13. I.A. Makaryan, I.V. Sedov. Russ. J. Appl. Chem. 96 (6), 619 (2023). https://doi.org/10.1134/S1070427223060010
  14. A.M. El-Melih, S. Ibrahim, A.K. Gupta, A. Al Shoaibi. Appl. Energy. 164 64 (2016). https://doi.org/10.1016/j.apenergy.2015.11.025
  15. S. Scognamiglio, B. Ciccone, G. Ruoppolo, G. Landi. Chem. Eng. Trans. 109, 277 (2024). https://doi.org/10.3303/CET24109047
  16. J.M. Colom-Díaz, M. Lecinena, A. Peláez et al. Fuel. 262, 116484 (2020). https://doi.org/10.1016/j.fuel.2019.116484
  17. A. Dell’Angelo, E.M. Andoglu, S. Kaytakoglu, F. Manenti. Chem. Prod. Process Model. 18 (1), 117 (2023). https://doi.org/10.1515/cppm-2021-0044
  18. V.A. Savelieva, A.M. Starik, N.S. Titova, O.N. Favorskii. Combust. Explos. Shock Waves. 54, 136 (2018). https://doi.org/10.1134/S0010508218020028
  19. A.M. El-Melih, A.Al Shoaibi, A.K. Gupta. Appl. Energy. 178, 609 (2016). https://doi.org/10.1016/j.apenergy.2016.06.053
  20. M. Kheirinik, N. Rahmanian. Advances Natural Gas: Formation, Processing, and Applications. Volume 7: Natural Gas Products and Uses, 263 (2024). https://doi.org/10.1016/B978-0-443-19227-2.00014-9
  21. F. Abdulrahman, Q. Wang, F. Angikath, S.M. Sarathy. Int. J. Hydrog. Energy. 67, 750 (2024). https://doi.org/10.1016/j.ijhydene.2024.04.213
  22. A.M. El-Melih, L. Iovine, A.Al Shoaibi, A.K. Gupta. Int. J. Hydrog. Energy. 42 (8), 4764 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.096
  23. A. Stagni, S. Arunthanayothin, L.P. Maffei et al. Chem. Eng. J. 446, 136723 (2022). https://doi.org/10.1016/j.cej.2022.136723
  24. E. Spatolisano, G.De Guido, L.A. Pellegrini et al. Int. J. Hydrog. Energy. 47 (35), 15612 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.090
  25. V. Palma, V. Vaiano, D. Barba et al. Int. J. Hydrog. Energy. 40 (1), 106 (2015). https://doi.org/10.1016/j.ijhydene.2014.11.022
  26. D. Bongartz, A.F. Ghoniem. Combust. Flame. 162 (3), 544 (2015). https://doi.org/10.1016/j.combustflame.2014.08.019
  27. Y. Li, X. Yu, H. Li et al. Appl. Energy. 190, 824 (2017). https://doi.org/10.1016/j.apenergy.2016.12.150
  28. S. Ibrahim, A. Raj. Ind. Eng. Chem. Res. 55 (24), 6743 (2016). https://doi.org/10.1021/acs.iecr.6b01176
  29. K.R. G.Burra, G. Bassioni, A.K. Gupta. Int. J. Hydrog. Energy. 43 (51), 22852 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.164
  30. H. Cruchade, I. C. Medeiros-Costa, N. Nesterenko et al. ACS Catalysis. 12 (23), 14533 (2022). https://pubs.acs.org/doi/10.1021/acscatal.2c03747
  31. R.B. Slimane, F.S. Lau, M. Khinkis et al. Int. J. Hydrog. Energy. 29 (14), 1471 (2004). https://doi.org/10.1016/j.ijhydene.2004.02.004
  32. J.P. Bingue, A.V. Saveliev, A.A. Fridman, L.A. Kennedy. Int. J. Hydrog. Energy. 27 (6), 643 (2002). https://doi.org/10.1016/S0360-3199(01)00174-4
  33. J.P. Bingue, A.V. Saveliev, A.A. Fridman, L.A. Kennedy. Exp. Therm. Fluid Sci. 26 (2-4), 409 (2002). https://doi.org/10.1016/S0894-1777(02)00151-6
  34. M. Toledo, A. Arriagada, N. Ripoll, E.A. Salgansky, M.A. Mujeebu. Renew. Sustain. Energy Rev. 177, 113213 (2023). https://doi.org/10.1016/j.rser.2023.113213
  35. S.O. Dorofeenko, E.V. Polianczyk. Fuel. 291, 120255 (2021). https://doi.org/10.1016/j.fuel.2021.120255
  36. I.A. Makaryan, E.A. Salgansky, V.S. Arutyunov, I.V. Sedov. Energies. 16 (6), 2916 (2023). https://doi.org/10.3390/en16062916
  37. V.M. Kislov, Yu.Yu. Tsvetkova, M.V. Tsvetkov et al. Combust., Explos. Shock Waves. 59 (2),83 (2023). https://doi.org/10.15372/FGV20230210
  38. V.M. Kislov, M.V. Tsvetkov, A.Y. Zaichenko et al. Russ. J. Phys. Chem. B. 17, 947 (2023). https://doi.org/10.1134/S1990793123040255
  39. E.A. Salgansky, M.V. Tsvetkov, Y.Y. Tsvetkova et al. Russ. J. Phys. Chem. B. 16, 1085 (2022). https://doi.org/10.1134/S1990793122060100
  40. E. Polianczyk, G. Tarasov, A. Zaichenko. E3S Web Conf. 474, 01013 (2024). https://doi.org/10.1051/e3sconf/202447401013
  41. Y.Y. Tsvetkova, V.M. Kislov, E.N. Pilipenko, M.V. Salganskaya, M.V. Tsvetkov. Russ. J. Phys. Chem. B. 18 (4), 980 (2024). https://doi.org/10.1134/S199079312470043X
  42. A. Arriagada, R. Mena, N. Ripoll et al. Chem. Eng. J. 495, 153011 (2024). https://doi.org/10.1016/j.cej.2024.153011
  43. V.M. Kislov, S.V. Glazov, E.A. Salgansky, Yu.Yu. Kolesnikova, M.V. Salganskaya. Combust. Explos. Shock Waves. 52, 320 (2016). https://doi.org/10.1134/S0010508216030102
  44. M.V. Salganskaya, S.V. Glazov, E.A. Salganskii et al. Russ. J. Phys. Chem. B. 2, 71 (2008). https://doi.org/10.1134/S1990793108010119
  45. E. A. Salgansky, M. V. Tsvetkov, A. Y. Zaichenko, D. N. Podlesniy, I.V. Sedov. Russ. J. Phys. Chem. B. 15, 969 (2021). https://doi.org/10.1134/S1990793121060087
  46. V.I. Savchenko, Y.S. Zimin, E. Busillo et al. Pet. Chem. 62, 515 (2022). https://doi.org/10.1134/S0965544122050048
  47. F. Tollini, M. Sponchioni, V. Calemma, D. Moscatelli. Energy Fuels, 37 (15), 11197 (2023). https://pubs.acs.org/doi/10.1021/acs.energyfuels.3c01237
  48. C.W. Wang, J. Li, L.H. Zhang et al. Fuel. 362, 130916 (2024). https://doi.org/10.1016/j.fuel.2024.130916
  49. B.G. Trusov. Proc. 14th Intern. Conf. Chemical Thermodynamics (NIIKh SPbGU, St. Petersburg). 483 (2002).
  50. S.D. Arsentev, A.H. Davtyan, Z.H. Manukyan et al. Russ. J. Phys. Chem. B 18, 125 (2024). https://doi.org/10.1134/S1990793124010020

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependences of the gas content (C) on the stoichiometric coefficient of excess fuel (φ) for air conversion of the composition xCH4+10 vol.% CO2+ +20 vol.% H2S, reduced to the mass of the obtained products at T=1273 K (a), 1573 K (b), and 1873 K (c).

Download (193KB)
3. Fig. 2. Dependences of the degree of hydrogen sulfide conversion ХH2S on the stoichiometric coefficient of excess fuel  for the steam-air conversion of the composition xCH4 +10 vol.% CO2 + 10 vol.% H2S + 5 vol.% H2O at the following temperatures: 1 – 1273 K, 2 – 1573 K, 3 – 1873 K

Download (62KB)

Copyright (c) 2025 Russian Academy of Sciences