Ion confinement efficiency in a complex plasma of glow discharge

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The parameters of the plasma of a low-pressure glow discharge in neon with microparticles are determined numerically, at which regions with equal values of the ion confinement efficiency in the cloud of microparticles are realized. It is noted that such features are characteristic of dissipative synergetic systems controlled by feedback. Simulation of a complex glow discharge plasma in neon with microparticles showed that feedback in the plasma is realized through the source of the main losses of its energy a cloud of microparticles. Controlling the discharge parameters by changing the concentration of microparticles in the cloud makes it possible to control the concentration of ions in the plasma.

Full Text

Restricted Access

About the authors

D. N. Polyakov

Joint Institute for High Temperatures, Russian Academy of Sciences

Author for correspondence.
Email: cryolab@ihed.ras.ru
Russian Federation, Moscow

V. V. Shumova

Joint Institute for High Temperatures, Russian Academy of Sciences; Semenov Institute of Chemical Physics, Russian Academy of Sciences

Email: cryolab@ihed.ras.ru
Russian Federation, Moscow; Moscow

L. M. Vasilyak

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: cryolab@ihed.ras.ru
Russian Federation, Moscow

References

  1. I. Adamovich, S. Agarwal, E. Ahedo et al., J. Phys. D: Appl. Phys. 55, 373001 (2022). https://doi.org/10.1088/1361-6463/ac5e1c
  2. F. Schlichting and H. Kersten, EPJ Techn. Instrum. 10, 19 (2023). https://doi.org/10.1140/epjti/s40485-023-00106-4
  3. D.N. Polyakov, V.V. Shumova, and L.M. Vasilyak, Plasma Sources Sci. Technol. 30, 07LT01 (2021). https://doi.org/10.1088/1361-6595/ac0a46
  4. V.V. Shumova, D.N. Polyakov, and L.M. Vasilyak, J. Appl. Phys. 128, 053301 (2020). https://doi.org/10.1063/5.0014944
  5. J. Beckers, J. Berndt, D. Block et al., Phys. Plasmas 30, 120601 (2023). https://doi.org/10.1063/5.0168088
  6. M.Y. Pustylnik, A.A. Pikalev, A.V. Zobnin, et al., Contribut. Plasma Phys. 61 (10), e202100126 (2021). https://doi.org/10.1002/ctpp.202100126
  7. G.V. Golubkov, M.I. Manzhelii, A.A. Berlin, A.A. Lushnikov, and L. V. Eppelbaum, Russ. J. Phys. Chem. B 12, 725 (2018). https://doi.org/10.1134/S1990793118040061
  8. G.V. Golubkov, N.V. Ardelyan, V.L. Bychkov, and K.V. Kosmachevskii, Russ. J. Phys. Chem. B 12, 755 (2018). https://doi.org/10.1134/S1990793118040073
  9. Y. Chengxun, L. Zhijian, V. L. Bychkov et al., Russ. J. Phys. Chem. B 16(5), 955 (2022). https://doi.org/10.1134/S1990793122050189
  10. M.G. Golubkov, A.V. Suvorova, A.V. Dmitriev, and G.V. Golubkov, Russ. J. Phys. Chem. B 14, 873 (2020). https://doi.org/10.1134/S1990793120050206
  11. D.N. Polyakov, V.V. Shumova, and L.M. Vasilyak, Russ. J. Phys. Chem. B 17 (5), 1241 (2023). https://doi.org/10.1134/S1990793123050263
  12. D.N. Polyakov, L.M. Vasilyak, and V.V. Shumova, Surf. Eng. Appl. Electrochem. 51, 143 (2015). https://doi.org/10.3103/S106837551502012X
  13. Y. Huttel, Gas-phase synthesis of nanoparticles. – John Wiley & Sons, Weinheim 2017. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527698417
  14. V.V. Shumova, D.N. Polyakov, and L.M. Vasilyak, Russ. J. Phys. Chem. B 14 (6), 959 (2020). https://doi.org/10.1134/S1990793120060275
  15. V.N. Mikhalkin, S.I. Sumskoi, A.M. Tereza et al. Russ. J. Phys. Chem. B 16 (4), 629 (2022). https://doi.org/10.1134/S1990793122040261
  16. V.V. Leschevich, V.V. Martynenko, O.G. Penyazkov, K.L. Sevrouk, and S.I. Shabunya, Shock Waves 26, 657 (2016). https://doi.org/10.1007/s00193-016-0665-9
  17. G.L. Agafonov, and A.M. Tereza, Russ. J. Phys. Chem. B 9, 92 (2015). https://doi.org/10.1134/S1990793115010145
  18. S.P. Medvedev, B.E. Gelfand, S.V. Khomik, and G.L. Agafonov, J. Engineer. Phys. and Thermophys. 83, 1170 (2010). https://doi.org/10.1007/s10891-010-0440-1
  19. V.V. Shumova, D.N. Polyakov, and L.M. Vasilyak, Russ. J. Phys. Chem. B 17 (4), 986 (2023). https://doi.org/10.1134/S1990793123040280
  20. L.M. Vasilyak, S.P. Vetchinin, D.N. Polyakov, and V.E. Fortov, J. Exp. Theor. Phys. 94 (3), 521 (2002). https://doi.org/10.1134/1.1469151
  21. D.N. Polyakov, V.V. Shumova, and L.M. Vasilyak, Plasma Sources Sci. Technol. 31, 074001 (2022). https://doi.org/10.1088/1361-6595/ac7c36
  22. W.M. Farrell, J.E. Wahlund, M. Morooka et al., J. Geophys. Res. Planets 122, 729 (2017). https://doi.org/10.1002/2016JE005235
  23. E.R. Williams, Atmos. Res. 91, 140 (2009). https://doi.org/10.1016/j.atmosres.2008.05.018
  24. N.V. Ardelyan, V.L. Bychkov, G.V. Golubkov, and K.V. Kosmachevskii, Russ. J. Phys. Chem. B 12, 749 (2018). https://doi.org/10.1134/S1990793118040036
  25. A.V. Kostrov, Plasma Phys. Rep. 46 (4), 443 (2020). https://doi.org/10.1134/S1063780X20040066
  26. R. Tian, Y. Liang, S. Hao, et al., Plasma Sci. Technol. 25, 095401 (2023). https://doi.org/10.1088/2058-6272/acc44a
  27. D.N. Polyakov, V.V. Shumova, and L.M. Vasilyak, IEEE Trans. Plasma Sci. 42, 2684 (2014). https://doi.org/10.1109/TPS.2014.2311584
  28. R.V. Krems, Phys. Chem. Chem. Phys. 10, 4079 (2008). https://doi.org/10.1039/B802322K
  29. G.J.M. Hagelaar, and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005). http://dx.doi.org/10.1088/0963-0252/14/4/011
  30. L.C. Pitchford, J. Phys. D: Appl. Phys. 46, 330301 (2013). https://iopscience.iop.org/article/10.1088/0022-3727/ 46/33/330301
  31. V.V. Shumova, D.N. Polyakov, and L.M. Vasilyak, Russ. J. Phys. Chem. B 15 (4), 691 (2021). https://doi.org/10.1134/S1990793121040242
  32. V.V. Shumova, D.N. Polyakov, and L.M. Vasilyak, Russ. J. Phys. Chem. B 14 (4), 666 (2020). https://doi.org/10.1134/S1990793120040223
  33. D.N. Polyakov, V.V. Shumova, and L.M. Vasilyak, Plasma Phys. Rep. 43 (3), 397 (2017). https://doi.org/10.1134/S1063780X17030096

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the positive column section of a glow discharge with microparticles: 1 – plasma, 2 – discharge tube of radius R, 3 – cloud of microparticles of radius rc, 4 – conventional image of feedback.

Download (22KB)
3. Fig. 2. Domains with equal ion trap efficiency indices at different concentrations of microparticles np in the range of neon pressure P from 30 to 120 Pa and discharge current I from 0.5 to 3 mA. The boundary lines of the domains correspond to the values ​​P = 120 Pa, I = 0.5 mA (dashed lines) and P = 40 Pa, I = 3 mA (solid lines).

Download (16KB)

Copyright (c) 2024 Russian Academy of Sciences