Spectral features of interaction of hemin and zinc porphyrin with sodium hexamolybdenicelate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interaction of hemin and the Zn(II)-complex of tetra(4-pyridyl)porphyrin (ZnTPP) with hexamolybdenonickelate anions in an aqueous medium has been studied by electron absorption spectroscopy and spectrofluorimetry. Differences in spectral behavior of two metal porphyrins when interacting with heteropoly compounds are associated with differences in the structure of these porphyrins. Both the transformation of the porphyrins characteristic bands is manifested, and new bands are found in the electron absorption spectra that indicates the formation of hybrid organo-inorganic complexes. In addition, fluorescence quenching of ZnTPP, predominantly of the static type, is observed, which also testifies the formation of hybrid complexes. The binding ability of the ZnTPP system - crystalline hydrate of sodium hexamolibdenonicelate (HMN) was evaluated, as well as the stability of the obtained hybrid complex. The results of the study will be useful when creating hybrid complexes by molecular design in order to further incorporate them into various biomedical applications.

Full Text

Restricted Access

About the authors

I. V. Klimenko

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: inna@deom.chph.ras.ru
Russian Federation, Moscow

E. V. Kitushina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Moscow State Pedagogical University, Institute of Biology and Chemistry

Email: inna@deom.chph.ras.ru
Russian Federation, Moscow; Moscow

A. V. Oreshkina

Moscow State Pedagogical University, Institute of Biology and Chemistry

Email: inna@deom.chph.ras.ru
Russian Federation, Moscow

A. V. Lobanov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Moscow State Pedagogical University, Institute of Biology and Chemistry

Email: inna@deom.chph.ras.ru
Russian Federation, Moscow; Moscow

References

  1. K.A. Askharov, B.D. Berezin, E.V. Bystritskaya et al. Porphyrins: spectroscopy, electrochemistry, application. Moscow: Nauka, 1987. [In Russian].
  2. B.D. Berezin. Metalloporphyrins. Moscow: Nauka, 1988. [In Russian].
  3. D.B. Berezin. Macrocyclic effect and structural chemistry of porphyrins. Moscow: IGHTU: КRASAND, 2010. [In Russian].
  4. G.P. Gurinovich, A.N. Sevchenko, K.N. Solov′ev. Uspekhi Fizicheskikh Nauk, 79 (2), 173 (1963).
  5. L. Zhao, R. Ma, J. Li et al. Biomacromolecules. 9 (10), 2601 (2008). https://doi.org/10.1021/bm8004808
  6. L.B. Josefsen, W.R. Boyle. Theranostics, 2 (9), 916 (2012). https://doi.org/10.7150/thno.4571
  7. R. Bonnett and G. Martinez. Tetrahedron 57 (47), 9513 (2001). https://doi.org/10.1016/S0040-4020(01)00952-8
  8. R. Bonnett. Comprehensive Coordination Chemistry II. 9, V. 9. London, UK: University of London 945 (2003). https://doi.org/10.1016/B0-08-043748-6/09204-5
  9. K.A. Zhdanova, I.O. Savel’eva, A.Yu. Usanev et al. Russ. J. Inorganic Chemistry. 67 (11), 1756 (2022). https://doi.org/10.1134/S0036023622601209
  10. D.J. Ball, S. Mayhew, S.R Wood et al. Photochem. Photobiol. 69 (3), 390 (1999). https://doi.org/10.1562/0031-8655(1999)069<0390:acsotc>2.3.co;2
  11. A.A. Esenpinar, M. Durmuş, M. Bulut. J. Photochem. Photobiol. A. 213 (2-3), 171 (2010). https://doi.org/10.1016/j.jphotochem.2010.05.021
  12. I.P. Beletskaya, V.S. Tyurin, A.Yu. Tsivadze et al. Chem. Rev. 109 (5), 1659 (2009). https://doi.org/10.1021/cr800247a
  13. A.V. Povolotskiy, D.A. Soldatova, D.A. Lukyanov et al. Russ. J. of Phys. Chem. B. 17 (6), 1398 (2023). https://doi.org/10.1134/S1990793123060192
  14. I.V. Klimenko, E.A. Trusova, A.N. Shchegolikhin et al. Fullerenes, Nanotubes and Carbon Nanostructures. 30 (1), 133 (2022). https://doi.org/10.1080/1536383X.2021.1976754
  15. K. Pamin, M. Prończuk, S. Basąg et al. Inorg. Chem. Commun. 59, 13 (2015). https://doi.org/10.1016/j.inoche.2015.06.005
  16. T. Okuhara, N. Mizuno, M. Misono. Advances in Catalysis. 41, 113 (1996). https://doi.org/10.1016/S0360-0564(08)60041-3
  17. S. Yoshida, H. Niiyama, E. Echigoya. J. Phys. Chem. 86 (16), 3150 (1982). https://doi.org/10.1021/j100213a018
  18. U.B. Mioc, M.R. Todorovic, M. Davidovic. Solid State Ionics. 176 (39-40), 3005 (2005). https://doi.org/10.1016/j.ssi.2005.09.056
  19. M. Aureliano. BioChem. 2022, 2 (1), 8 (2022). https://doi.org/10.3390/biochem2010002
  20. P. Tyubaeva, I. Varyan, A. Lobanov et al. Polymers. 13 (22), 4024 (2021). https://doi.org/10.3390/polym13224024
  21. Yu.V. Tertyshnaya, A.V. Khvatov, A.V. Lobanov. Russ. J. Phys. Chem. B. 11 (5), 829 (2017). https://doi.org/10.1134/S199079311705013X
  22. O.M. Kulikova, V.B. Sheinin, O.I. Koifman. Macroheterocycles 14 (1) 79 (2021). https://doi.org/10.6060/mhc200501s
  23. S.M.T. Nunes, F.S. Sguilla, A.C. Tedesco. J. of Medical and Biol. Research. 37 (2), 237 (2004). https://doi.org/10.1590/s0100-879x2004000200016
  24. E.A. Lukyanets, V.N. Nemykin. J. Porphyrins Phthalocyanines. 14, 1 (2010). https://doi.org/10.1142/S1088424610001799
  25. B.D. Berezin, O.I. Koifman. Russ. Chem. Rev. 49 (12), 1188 (1980).
  26. I.V. Klimenko, M.A. Gradova, O.V. Gradov et al. Russ. J. Phys. Chem B. 14 (3), 436 (2020). https://doi.org/10.1134/S1990793120030070
  27. W.F. Razumov. Russ. J. Phys. Chem. B. 17 (1), 36, (2023). https://doi.org/10.1134/S199079312301027X
  28. I.D. Burtsev, A.E. Egorov, A.A. Kostyukov et al. Russ. J. Phys. Chem. B. 16 (1), 109, (2022). https://doi.org/10.1134/S1990793122010195
  29. A.I. Poletaev. Russ. J. Phys. Chem. B. 17 (5) 1168, (2023). https://doi.org/10.1134/S1990793123050093
  30. A.V. Oreshkina, G.Z. Kaziev, N.Yu. Glazunova. Russ. J. Inorg. Chem. 53 (10), 1552 (2008). https://doi.org/10.1134/S0036023608100057
  31. V.A. Figurnov. Method for production of hemine: Patent № RU 2045267 C1, 1995.
  32. J.M.S. Lopes, S.N. Costa, E. SilveiraAlves Jr et al. Braz. J. of Phys. 52, 164 (2022). https://doi.org/10.1007/s13538-022-01166-9
  33. W. Sun, H. Wang, D. Qi et al. CrystEngComm. 14, 7780 (2012). https://doi.org/10.1039/c2ce25187f
  34. M. Gouterman. Optical spectra and electronic structure of porphyrins and related rings, in The porphyrins (ed. by D. Dolphin). Academic Press, Inc. 3 (1978).
  35. I.V. Klimenko, T.Yu. Astakhova, E.N. Timokhina et al. J of Biomedical Photonics & Eng. 9 (2), 030301(1–14) (2023). https://doi.org/10.18287/JBPE23.09.030301
  36. J.R. Lakowicz. Principles of Fluorescence Spectroscopy. Third Edition. Springer Science+Business Media, LLC (2006). https://doi.org/10.1007/978-0-387-46312-4_2
  37. W.R. Ware. J. Phys. Chem. 66, 455 (1962). https://doi.org/10.1021/j100809a020.
  38. V.D. Suryawanshi, L.S. Walekar, A.H. Gore et. al. J. Pharm. Anal. 6 (1), 56 (2016). https://doi.org/10.1016/j.jpha.2015.07.001i
  39. H.A. Benesi, J.H. Hildebrand. J. Am. Chem. Soc. 71, 2703 (1949). https://doi.org/10.1021/ja01176a030
  40. R. Wang, Zh. Yu. Acta Phys. -Chim. Sin. 23 (9), 1353 (2007). https://doi.org/10.1016/S1872-1508(07)60071-0
  41. D.B. Berezin, A.V. Kustov, M.A. Krest'yaninov et. al. J. of Mol. Liquids. 283, 532 (2019). https://doi.org/10.1016/j.molliq.2019.03.091
  42. D. Roy, A. Chakraborty, R. Ghosh. RSC Advances. 7 (64), 40563 (2017). https://doi.org/10.1039/c7ra06687b

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of GPS (a), ZnTPP (b) and FePP (c).

Download (165KB)
3. Fig. 2. Electronic absorption spectra of GMN and porphyrins: a – spectra of GMN (10-5 mol/l) in water (1), FePP (10-5 mol/l) in DMF (2), GMN (10-5 mol/l) and FePP (10-5 mol/l) in the water–DMF system in a ratio of 1:1 (3), FePP (10-5 mol/l) in the water–DMF system in a ratio of 1:1 (4); b – spectra of GMN (10-5 mol/l) in water (1), ZnTPP (10-5 mol/l) in DMF (2), ZnTPP (10-5 mol/l) in the water – DMF system in a ratio of 1:1 (3), GMN (10-5 mol/l) and ZnTPP (10-6 mol/l) in the water – DMF system in a ratio of 1:1 (4), GMN (10-5 mol/l) and ZnTPP (10-5 mol/l) in the water – DMF system in a ratio of 1:1 (5).

Download (67KB)
4. Fig. 3. Fluorescence spectra of ZnTPP in DMF during titration with a solution of HMN in water (10-5 mol/L); СZnTPP in the system: 1 – 1 ∙ 10-5 mol/L (without adding HMN); 2 – 8 ∙ 10-6 mol/L; 3 – 6.7 ∙ 10-6 mol/L; 4 – 5.7 ∙ 10-6 mol/L; 5 – 5 ∙ 10-6 mol/L; 6 – 4.4 ∙ 10-6 mol/L; 7 – 4 ∙ 10-6 mol/L; 8 – 3.6 ∙ 10-6 mol/L; 9 – 3.3 ∙ 10-6 mol/L; λex = 430 nm. The inset shows a graph for calculating the Stern–Volmer constant, where Ifl0 and Ifl are the fluorescence intensities in the absence and presence of the quencher, respectively.

Download (70KB)
5. Fig. 4. Absorption spectra of ZnTPP in DMF during titration with a solution of HMN in water (10-5 mol/L); CZnTPP in the system: 1 – 1 ∙ 10-5 mol/L (without adding HMN); 2 – 8 ∙ 10-6 mol/L; 3 – 6.7 ∙ 10-6 mol/L; 4 – 5.7 ∙ 10-6 mol/L; 5 – 5 ∙ 10-6 mol/L; 6 – 4.4 ∙ 10-6 mol/L; 7 – 4 ∙ 10-6 mol/L; 8 – 3.6 ∙ 10-6 mol/L; 9 – 3.3 ∙ 10-6 mol/L. The inset shows a graph for calculating the binding constant in Benesi–Hildebrand coordinates.

Download (66KB)

Copyright (c) 2025 Russian Academy of Sciences