Spectral features of interaction of hemin and zinc porphyrin with sodium hexamolybdenicelate
- Authors: Klimenko I.V.1, Kitushina E.V.1,2, Oreshkina A.V.2, Lobanov A.V.1,2
-
Affiliations:
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- Moscow State Pedagogical University, Institute of Biology and Chemistry
- Issue: Vol 44, No 2 (2025)
- Pages: 80-90
- Section: Chemical physics of biological processes
- URL: https://vestnikugrasu.org/0207-401X/article/view/681129
- DOI: https://doi.org/10.31857/S0207401X25020082
- ID: 681129
Cite item
Abstract
The interaction of hemin and the Zn(II)-complex of tetra(4-pyridyl)porphyrin (ZnTPP) with hexamolybdenonickelate anions in an aqueous medium has been studied by electron absorption spectroscopy and spectrofluorimetry. Differences in spectral behavior of two metal porphyrins when interacting with heteropoly compounds are associated with differences in the structure of these porphyrins. Both the transformation of the porphyrins characteristic bands is manifested, and new bands are found in the electron absorption spectra that indicates the formation of hybrid organo-inorganic complexes. In addition, fluorescence quenching of ZnTPP, predominantly of the static type, is observed, which also testifies the formation of hybrid complexes. The binding ability of the ZnTPP system - crystalline hydrate of sodium hexamolibdenonicelate (HMN) was evaluated, as well as the stability of the obtained hybrid complex. The results of the study will be useful when creating hybrid complexes by molecular design in order to further incorporate them into various biomedical applications.
Full Text

About the authors
I. V. Klimenko
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Author for correspondence.
Email: inna@deom.chph.ras.ru
Russian Federation, Moscow
E. V. Kitushina
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Moscow State Pedagogical University, Institute of Biology and Chemistry
Email: inna@deom.chph.ras.ru
Russian Federation, Moscow; Moscow
A. V. Oreshkina
Moscow State Pedagogical University, Institute of Biology and Chemistry
Email: inna@deom.chph.ras.ru
Russian Federation, Moscow
A. V. Lobanov
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Moscow State Pedagogical University, Institute of Biology and Chemistry
Email: inna@deom.chph.ras.ru
Russian Federation, Moscow; Moscow
References
- K.A. Askharov, B.D. Berezin, E.V. Bystritskaya et al. Porphyrins: spectroscopy, electrochemistry, application. Moscow: Nauka, 1987. [In Russian].
- B.D. Berezin. Metalloporphyrins. Moscow: Nauka, 1988. [In Russian].
- D.B. Berezin. Macrocyclic effect and structural chemistry of porphyrins. Moscow: IGHTU: КRASAND, 2010. [In Russian].
- G.P. Gurinovich, A.N. Sevchenko, K.N. Solov′ev. Uspekhi Fizicheskikh Nauk, 79 (2), 173 (1963).
- L. Zhao, R. Ma, J. Li et al. Biomacromolecules. 9 (10), 2601 (2008). https://doi.org/10.1021/bm8004808
- L.B. Josefsen, W.R. Boyle. Theranostics, 2 (9), 916 (2012). https://doi.org/10.7150/thno.4571
- R. Bonnett and G. Martinez. Tetrahedron 57 (47), 9513 (2001). https://doi.org/10.1016/S0040-4020(01)00952-8
- R. Bonnett. Comprehensive Coordination Chemistry II. 9, V. 9. London, UK: University of London 945 (2003). https://doi.org/10.1016/B0-08-043748-6/09204-5
- K.A. Zhdanova, I.O. Savel’eva, A.Yu. Usanev et al. Russ. J. Inorganic Chemistry. 67 (11), 1756 (2022). https://doi.org/10.1134/S0036023622601209
- D.J. Ball, S. Mayhew, S.R Wood et al. Photochem. Photobiol. 69 (3), 390 (1999). https://doi.org/10.1562/0031-8655(1999)069<0390:acsotc>2.3.co;2
- A.A. Esenpinar, M. Durmuş, M. Bulut. J. Photochem. Photobiol. A. 213 (2-3), 171 (2010). https://doi.org/10.1016/j.jphotochem.2010.05.021
- I.P. Beletskaya, V.S. Tyurin, A.Yu. Tsivadze et al. Chem. Rev. 109 (5), 1659 (2009). https://doi.org/10.1021/cr800247a
- A.V. Povolotskiy, D.A. Soldatova, D.A. Lukyanov et al. Russ. J. of Phys. Chem. B. 17 (6), 1398 (2023). https://doi.org/10.1134/S1990793123060192
- I.V. Klimenko, E.A. Trusova, A.N. Shchegolikhin et al. Fullerenes, Nanotubes and Carbon Nanostructures. 30 (1), 133 (2022). https://doi.org/10.1080/1536383X.2021.1976754
- K. Pamin, M. Prończuk, S. Basąg et al. Inorg. Chem. Commun. 59, 13 (2015). https://doi.org/10.1016/j.inoche.2015.06.005
- T. Okuhara, N. Mizuno, M. Misono. Advances in Catalysis. 41, 113 (1996). https://doi.org/10.1016/S0360-0564(08)60041-3
- S. Yoshida, H. Niiyama, E. Echigoya. J. Phys. Chem. 86 (16), 3150 (1982). https://doi.org/10.1021/j100213a018
- U.B. Mioc, M.R. Todorovic, M. Davidovic. Solid State Ionics. 176 (39-40), 3005 (2005). https://doi.org/10.1016/j.ssi.2005.09.056
- M. Aureliano. BioChem. 2022, 2 (1), 8 (2022). https://doi.org/10.3390/biochem2010002
- P. Tyubaeva, I. Varyan, A. Lobanov et al. Polymers. 13 (22), 4024 (2021). https://doi.org/10.3390/polym13224024
- Yu.V. Tertyshnaya, A.V. Khvatov, A.V. Lobanov. Russ. J. Phys. Chem. B. 11 (5), 829 (2017). https://doi.org/10.1134/S199079311705013X
- O.M. Kulikova, V.B. Sheinin, O.I. Koifman. Macroheterocycles 14 (1) 79 (2021). https://doi.org/10.6060/mhc200501s
- S.M.T. Nunes, F.S. Sguilla, A.C. Tedesco. J. of Medical and Biol. Research. 37 (2), 237 (2004). https://doi.org/10.1590/s0100-879x2004000200016
- E.A. Lukyanets, V.N. Nemykin. J. Porphyrins Phthalocyanines. 14, 1 (2010). https://doi.org/10.1142/S1088424610001799
- B.D. Berezin, O.I. Koifman. Russ. Chem. Rev. 49 (12), 1188 (1980).
- I.V. Klimenko, M.A. Gradova, O.V. Gradov et al. Russ. J. Phys. Chem B. 14 (3), 436 (2020). https://doi.org/10.1134/S1990793120030070
- W.F. Razumov. Russ. J. Phys. Chem. B. 17 (1), 36, (2023). https://doi.org/10.1134/S199079312301027X
- I.D. Burtsev, A.E. Egorov, A.A. Kostyukov et al. Russ. J. Phys. Chem. B. 16 (1), 109, (2022). https://doi.org/10.1134/S1990793122010195
- A.I. Poletaev. Russ. J. Phys. Chem. B. 17 (5) 1168, (2023). https://doi.org/10.1134/S1990793123050093
- A.V. Oreshkina, G.Z. Kaziev, N.Yu. Glazunova. Russ. J. Inorg. Chem. 53 (10), 1552 (2008). https://doi.org/10.1134/S0036023608100057
- V.A. Figurnov. Method for production of hemine: Patent № RU 2045267 C1, 1995.
- J.M.S. Lopes, S.N. Costa, E. SilveiraAlves Jr et al. Braz. J. of Phys. 52, 164 (2022). https://doi.org/10.1007/s13538-022-01166-9
- W. Sun, H. Wang, D. Qi et al. CrystEngComm. 14, 7780 (2012). https://doi.org/10.1039/c2ce25187f
- M. Gouterman. Optical spectra and electronic structure of porphyrins and related rings, in The porphyrins (ed. by D. Dolphin). Academic Press, Inc. 3 (1978).
- I.V. Klimenko, T.Yu. Astakhova, E.N. Timokhina et al. J of Biomedical Photonics & Eng. 9 (2), 030301(1–14) (2023). https://doi.org/10.18287/JBPE23.09.030301
- J.R. Lakowicz. Principles of Fluorescence Spectroscopy. Third Edition. Springer Science+Business Media, LLC (2006). https://doi.org/10.1007/978-0-387-46312-4_2
- W.R. Ware. J. Phys. Chem. 66, 455 (1962). https://doi.org/10.1021/j100809a020.
- V.D. Suryawanshi, L.S. Walekar, A.H. Gore et. al. J. Pharm. Anal. 6 (1), 56 (2016). https://doi.org/10.1016/j.jpha.2015.07.001i
- H.A. Benesi, J.H. Hildebrand. J. Am. Chem. Soc. 71, 2703 (1949). https://doi.org/10.1021/ja01176a030
- R. Wang, Zh. Yu. Acta Phys. -Chim. Sin. 23 (9), 1353 (2007). https://doi.org/10.1016/S1872-1508(07)60071-0
- D.B. Berezin, A.V. Kustov, M.A. Krest'yaninov et. al. J. of Mol. Liquids. 283, 532 (2019). https://doi.org/10.1016/j.molliq.2019.03.091
- D. Roy, A. Chakraborty, R. Ghosh. RSC Advances. 7 (64), 40563 (2017). https://doi.org/10.1039/c7ra06687b
Supplementary files
