Dynamics and depth of the conversion of water vapor into hydrogen during combustion of aluminum nanopowder in steam
- Authors: Storozhev V.B.1, Yermakov A.N.1
-
Affiliations:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Issue: Vol 44, No 2 (2025)
- Pages: 63-72
- Section: Combustion, explosion and shock waves
- URL: https://vestnikugrasu.org/0207-401X/article/view/681127
- DOI: https://doi.org/10.31857/S0207401X25020061
- ID: 681127
Cite item
Abstract
The paper presents the results of numerical simulation of the hydrogen production process during the combustion of aluminum nanopowder in water vapor. The calculations assumed that the configuration of the oxide coating on aluminum nanoparticles at the melting point of the oxide and above is thermodynamically equilibrium (oxide “cap”). Numerical experiments have revealed the influence of aluminum particle sizes, stoichiometry of reagents, as well as the mass fraction of the oxide coating on the depth of water vapor conversion to hydrogen. It was found that, despite pronounced exothermicity and concomitant high temperatures (T ≈ 3000 K and above), the process under consideration provides a significant depth of conversion of water vapor into hydrogen. At the same time, the initial oxide coating has a rather weak effect on the hydrogen output, and the rate of the combustion process, although it decreases with an increase in the mass fraction of the oxide in the system at the initial time, is also not too pronounced.
Keywords
Full Text

About the authors
V. B. Storozhev
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Author for correspondence.
Email: storozhev@chph.ras.ru
Russian Federation, Moscow
A. N. Yermakov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: storozhev@chph.ras.ru
Russian Federation, Moscow
References
- I. Dincer. Int. J. Hydrogen Energy, 27 (3), 265, (2002). https://doi.org/10.1016/S0360-3199(01)00119-7
- A.S. Palankoeva, A.A. Belyaev, V.S. Arutyunov. Russ. J. Phys. Chem. B. 16 (3), 399 (2022). https://doi.org/10.1134/s1990793122030204
- S.O. Dorofeenko, E.V. Polianczyk. Russ. J. Phys. Chem. B. 16 (2), 242 (2022). https://doi.org/10.1134/S199079312202004X
- V.M. Kislov, M.V. Tsvetkov, A.Yu. Zaichenko et al. Russ. J. Phys. Chem. B. 17 (4), 947 (2023). https://doi.org/10.1134/s1990793123040255
- A.G. Egorov, A.S. Tizilov. Russ. J. Phys. Chem. B. 17 (2), 447 (2023). https://doi.org/10.1134/s1990793123020252
- M.V. Tsvetkov, V.M. Kislov, Yu.Yu. Tsvetkova et al. Russ. J. Phys. Chem. B. 16 (4), 711 (2022). https://doi.org/10.1134/S1990793122040315
- A.E. Sheindlin, V.A. Btyurin, A.Z. Zhuk et al. Doklady Physics, 54 (4), 202 (2009). https://doi.org/10.1134/S1028335809040119
- F. Franzoni, M. Milani, L. Montorsi et al. Int. J. Hydrogen Energy 35 (4), 1548 (2010). https://doi.org/10.1016/j.ijhydene.2009.11.107
- Y. Huang, G. Risha, V. Yang et al. 43rd AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper 2005-738. https://doi.org/10.2514/6.2005-738
- A.M. Starik, P.S. Kuleshov, A.S. Sharipov et al. Combust. Flame 161 (6), 1659 (2014). https://doi.org/10.1016/j.combustflame.2013.12.007
- A.M. Starik, A.M. Savel’ev, N.S. Titova. Combust. Explos. Shock Waves 51, 197 (2015). http://dx.doi.org/10.1134/S0010508215020057
- V.B. Storozhev, A.N. Yermakov. Combust. Flame 162 (11), 4129 (2015). https://doi.org/10.1016/j.combustflame.2015.08.013
- D. Sundaram, V. Yang, R. Yetter. Prog. Energy Combust. Sci. 61, 293 (2017). https://doi.org/10.1016/j.pecs.2017.02.002
- T.R. Valiullin, R.I. Egorov, P.A. Strizhak // Energy Fuels 31, 1044 (2017). http://dx.doi.org/10.1021/acs.energyfuels.6b02540
- E.W. Price, R.K. Sigman. Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry Combustion and Motor Interior Ballistics, V. Yang, T.B. Brill, and W.Z. Ren, eds., AIAA, New-York, 663 (2000). 10.2514/4.866562' target='_blank'>https://arc.aiaa.org/doi: 10.2514/4.866562
- V.A. Babuk, V.A. Vassiliev, V.V. Sviridov. Ibid. P. 749 (2000). 10.2514/4.866562' target='_blank'>https://arc.aiaa.org/doi: 10.2514/4.866562
- J.C. Melcher, H. Krier, R.L. Burton. J. Propul. Power 18 (3), 631 (2002). https://doi.org/10.2514/2.5977
- A.Y. Krainov, V.A. Poryazov, K.M. Moiseeva et al. J. Eng. Phys. Thermophys. 94, 79 (2021). https://doi.org/10.1007/s10891-021-02275-z
- Y. Huang, G. Risha, V. Yang et al. Combust. and Flame 156 (1) 5 (2009). https://doi.org/10.1016/j.combustflame.2008.07.018
- V.B. Storozhev, A.N. Yermakov. Combust. and Flame 190, 103 (2018). https://doi.org/10.1016/j.combustflame.2017.11.014
- V.B. Storozhev, A.N. Yermakov, Combust. and Flame 226, 182 (2021). https://doi.org/10.1016/j.combustflame.2020.11.040
- M.Ya. Gen, Yu.V. Frolov, V.B. Storozhev. Combust. Expl. Shock Waves 14 (5), 675 (1978). https://doi.org/10.1007/BF00789734
- J. Glorian, S. Gallier, L. Catoire. Combust. and Flame 168, 378 (2016). https://doi.org/10.1016/j.combustflame.2016.01.022
- P. Lynch, G. Fiore, H. Krier. Combust. Sci. Technol. 182 (7), 842 (2010). https://doi.org/10.1080/00102200903341561
- V.B. Storozhev. Surf. Sci. 397, 170 (1998). https://doi.org/ 10.1016/S0039-6028(97)00729-2
- V.B. Storozhev. Aerosol Sci. Technol. 34, 179 (2001). https://doi.org/10.1080/027868201300034781
- E.L. Dreizin. Combust. and Flame 105, 541 (1996). https://doi.org/10.1016/0010-2180(95)00224-3
- M.W. Beckstead. Combust. Explos. Shock Waves, 41, 533 (2005). https://doi.org/10.1007/s10573-005-0067-2
- J.M. Bergthorson, Ph. Julien, S. Goroshin et al. Combust. and Flame 171, 262 (2016). https://doi.org/10.1016/j.combustflame.2016.06.002
- T. Bazyn, H. Krier, N. Glumac. Combust. Flame 145 (4),703 (2006). https://doi.org/10.1016/j.combustflame.2005.12.017
Supplementary files
