Dynamics and depth of the conversion of water vapor into hydrogen during combustion of aluminum nanopowder in steam

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of numerical simulation of the hydrogen production process during the combustion of aluminum nanopowder in water vapor. The calculations assumed that the configuration of the oxide coating on aluminum nanoparticles at the melting point of the oxide and above is thermodynamically equilibrium (oxide “cap”). Numerical experiments have revealed the influence of aluminum particle sizes, stoichiometry of reagents, as well as the mass fraction of the oxide coating on the depth of water vapor conversion to hydrogen. It was found that, despite pronounced exothermicity and concomitant high temperatures (T ≈ 3000 K and above), the process under consideration provides a significant depth of conversion of water vapor into hydrogen. At the same time, the initial oxide coating has a rather weak effect on the hydrogen output, and the rate of the combustion process, although it decreases with an increase in the mass fraction of the oxide in the system at the initial time, is also not too pronounced.

Full Text

Restricted Access

About the authors

V. B. Storozhev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: storozhev@chph.ras.ru
Russian Federation, Moscow

A. N. Yermakov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: storozhev@chph.ras.ru
Russian Federation, Moscow

References

  1. I. Dincer. Int. J. Hydrogen Energy, 27 (3), 265, (2002). https://doi.org/10.1016/S0360-3199(01)00119-7
  2. A.S. Palankoeva, A.A. Belyaev, V.S. Arutyunov. Russ. J. Phys. Chem. B. 16 (3), 399 (2022). https://doi.org/10.1134/s1990793122030204
  3. S.O. Dorofeenko, E.V. Polianczyk. Russ. J. Phys. Chem. B. 16 (2), 242 (2022). https://doi.org/10.1134/S199079312202004X
  4. V.M. Kislov, M.V. Tsvetkov, A.Yu. Zaichenko et al. Russ. J. Phys. Chem. B. 17 (4), 947 (2023). https://doi.org/10.1134/s1990793123040255
  5. A.G. Egorov, A.S. Tizilov. Russ. J. Phys. Chem. B. 17 (2), 447 (2023). https://doi.org/10.1134/s1990793123020252
  6. M.V. Tsvetkov, V.M. Kislov, Yu.Yu. Tsvetkova et al. Russ. J. Phys. Chem. B. 16 (4), 711 (2022). https://doi.org/10.1134/S1990793122040315
  7. A.E. Sheindlin, V.A. Btyurin, A.Z. Zhuk et al. Doklady Physics, 54 (4), 202 (2009). https://doi.org/10.1134/S1028335809040119
  8. F. Franzoni, M. Milani, L. Montorsi et al. Int. J. Hydrogen Energy 35 (4), 1548 (2010). https://doi.org/10.1016/j.ijhydene.2009.11.107
  9. Y. Huang, G. Risha, V. Yang et al. 43rd AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper 2005-738. https://doi.org/10.2514/6.2005-738
  10. A.M. Starik, P.S. Kuleshov, A.S. Sharipov et al. Combust. Flame 161 (6), 1659 (2014). https://doi.org/10.1016/j.combustflame.2013.12.007
  11. A.M. Starik, A.M. Savel’ev, N.S. Titova. Combust. Explos. Shock Waves 51, 197 (2015). http://dx.doi.org/10.1134/S0010508215020057
  12. V.B. Storozhev, A.N. Yermakov. Combust. Flame 162 (11), 4129 (2015). https://doi.org/10.1016/j.combustflame.2015.08.013
  13. D. Sundaram, V. Yang, R. Yetter. Prog. Energy Combust. Sci. 61, 293 (2017). https://doi.org/10.1016/j.pecs.2017.02.002
  14. T.R. Valiullin, R.I. Egorov, P.A. Strizhak // Energy Fuels 31, 1044 (2017). http://dx.doi.org/10.1021/acs.energyfuels.6b02540
  15. E.W. Price, R.K. Sigman. Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry Combustion and Motor Interior Ballistics, V. Yang, T.B. Brill, and W.Z. Ren, eds., AIAA, New-York, 663 (2000). 10.2514/4.866562' target='_blank'>https://arc.aiaa.org/doi: 10.2514/4.866562
  16. V.A. Babuk, V.A. Vassiliev, V.V. Sviridov. Ibid. P. 749 (2000). 10.2514/4.866562' target='_blank'>https://arc.aiaa.org/doi: 10.2514/4.866562
  17. J.C. Melcher, H. Krier, R.L. Burton. J. Propul. Power 18 (3), 631 (2002). https://doi.org/10.2514/2.5977
  18. A.Y. Krainov, V.A. Poryazov, K.M. Moiseeva et al. J. Eng. Phys. Thermophys. 94, 79 (2021). https://doi.org/10.1007/s10891-021-02275-z
  19. Y. Huang, G. Risha, V. Yang et al. Combust. and Flame 156 (1) 5 (2009). https://doi.org/10.1016/j.combustflame.2008.07.018
  20. V.B. Storozhev, A.N. Yermakov. Combust. and Flame 190, 103 (2018). https://doi.org/10.1016/j.combustflame.2017.11.014
  21. V.B. Storozhev, A.N. Yermakov, Combust. and Flame 226, 182 (2021). https://doi.org/10.1016/j.combustflame.2020.11.040
  22. M.Ya. Gen, Yu.V. Frolov, V.B. Storozhev. Combust. Expl. Shock Waves 14 (5), 675 (1978). https://doi.org/10.1007/BF00789734
  23. J. Glorian, S. Gallier, L. Catoire. Combust. and Flame 168, 378 (2016). https://doi.org/10.1016/j.combustflame.2016.01.022
  24. P. Lynch, G. Fiore, H. Krier. Combust. Sci. Technol. 182 (7), 842 (2010). https://doi.org/10.1080/00102200903341561
  25. V.B. Storozhev. Surf. Sci. 397, 170 (1998). https://doi.org/ 10.1016/S0039-6028(97)00729-2
  26. V.B. Storozhev. Aerosol Sci. Technol. 34, 179 (2001). https://doi.org/10.1080/027868201300034781
  27. E.L. Dreizin. Combust. and Flame 105, 541 (1996). https://doi.org/10.1016/0010-2180(95)00224-3
  28. M.W. Beckstead. Combust. Explos. Shock Waves, 41, 533 (2005). https://doi.org/10.1007/s10573-005-0067-2
  29. J.M. Bergthorson, Ph. Julien, S. Goroshin et al. Combust. and Flame 171, 262 (2016). https://doi.org/10.1016/j.combustflame.2016.06.002
  30. T. Bazyn, H. Krier, N. Glumac. Combust. Flame 145 (4),703 (2006). https://doi.org/10.1016/j.combustflame.2005.12.017

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the temperature T of the reacting mixture (a) and the mole fractions x (b) of molecular (curve 1) and atomic (curve 2) hydrogen on time.

Download (49KB)
3. Fig. 2. Dependence of the temperature T of the reacting mixture on time at different values ​​of the initial ratio of aluminum and water concentrations: 1 – [Al(c)]0 : [H2O(g)]0 = 2 : 3, 2 – [Al(c)]0 : [H2O(g)]0 = 1 : 3; 3 – [Al(c)]0 : [H2O(g)]0 = 3 : 3.

Download (38KB)
4. Fig. 3. Time dependence of the rate of production of molecular hydrogen Jsum(H2) due to various reactions: 1 – (R1) + (R2), 2 – (R37) + (R38); 3 – (R39) + (R40).

Download (27KB)

Copyright (c) 2025 Russian Academy of Sciences