Experimental determination of the features of propagation the second kind combustion waves in condensed matter using the example of Ti–C2H2O4

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, an experimental study was conducted on the propagation features of 2nd kind combustion waves using the Ti-C2H2O4 system as an example. SH-synthesis temperatures, velocities, thermal effects, combustion limits, phase and chemical composition of products are determined. The temperature and depth of transformations at the combustion surface were calculated based on the obtained data. It was discovered that a mixture of titanium and oxalic acid can combust over a wide range of component concentrations: from 2 to 19 moles of titanium per mole of acid. Two modes of combustion waves of the 2nd kind have been identified: with a titanium content of 2 to 4 mol per mole of oxalic acid - discrete layer-by-layer, and with a titanium content >4 mol – frontal. In the entire series of experiments carried out with single-phase products, the corresponding composition of the initial mixtures was only 5Ti + C2H2O4 and 6Ti + C2H2O4. The absence of titanium oxalates of the type TiC2O4 and Ti2(C2O4)3 in the products was shown. The possibility of carrying out the SH-synthesis under conditions where the rates, combustion temperatures and thermal effects of the reaction are not symbatic in their concentration dependence has been experimentally confirmed.

Full Text

Restricted Access

About the authors

A. G. Tarasov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Author for correspondence.
Email: aleksei_tarasov@mail.ru
Russian Federation, Chernogolovka

I. A. Studenikin

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: aleksei_tarasov@mail.ru
Russian Federation, Chernogolovka

References

  1. A.S. Rogachev, A.S. Mukasyan. Combustion for Material Synthesis, Boca Raton. CRC Press. (2014). https://doi.org/10.1201/b17842
  2. A.G. Merzhanov, B.I. Khaikin. Prog. Energy Combust. Sci. 14 (1988). https://doi.org/10.1016/0360-1285(88)90006-8
  3. A.G. Merzhanov, A.S. Rogachev. Pure and Appl. Chem. 64, 7. (1992).
  4. V.G. Prokof’ev, T.I Khudyakova. J. Phys. Conf. Ser. 1115, 4 (2018). https://doi.org/10.1088/1742-6596/1115/4/042032
  5. A.S. Rogachev, S.G. Vadchenko, A.S. Mukasyan. Adv. in Sci. and Technol. 88 (2014). https://doi.org/10.4028/www.scientific.net/ast.88.85
  6. B.S. Seplyarskii, R.A. Kochetkov, T.G. Lisina et al. Russ. J. Phys. Chem. B. 17, 5 (2023). https://doi.org/10.1134/S199079312305010X.
  7. X. Zuwei, Z. Haibo, W. Yijie et al. Combust. and Flame. 162, 8 (2015). https://doi.org/10.1016/j.combustflame.2015.05.006
  8. P.M. Krishenik, S.V. Kostin, S.A. Rogachev. Russ. J. Phys. Chem. B. 17, 5 (2023). https://doi.org/10.1134/S1990793123050044
  9. A.A. Belyaev, B.S. Ermolaev. Russ. J. Phys. Chem. B. 17, 4 (2023). https://doi.org/10.1134/S199079312304022X
  10. N.A. Kochetov, B.S. Seplyarsky. Russ. J. Phys. Chem. B. 17, 2 (2023). https://doi.org/10.1134/S1990793123020082
  11. A.G. Merzhanov. Combust. and Flame. 13, 2 (1969). https://doi.org/10.1016/0010-2180(69)90045-5
  12. A.G. Merzhanov. Dokl. Akad. Nauk SSSR. 233, 6 (1977).
  13. V.G. Ivanov, S.N. Leonov, O.V. Gavrilyuk et al. Combust Explos Shock Waves, 30, (1994). https://doi.org/10.1007/BF00755826
  14. A.G. Tarasov, I.A. Studenikin. Intern. J. Self-Propag. High-Temp. Synth. 31, 3 (2022). https://doi.org/10.3103/S1061386222030086
  15. E.G. Klimchuk, A.G. Tarasov. Combust. Flame. 191 (2018). https://doi.org/10.1016/j.combustflame.2018.02.017p
  16. A.G. Tarasov, E.G. Klimchuk. Proc. Intern. sci. conf. Modern chemical physics at the intersection of physics, chemistry, and biology, Chernogolovka, Russia: FRC PCP MC RAS (2021).
  17. A.G. Merzhanov. Solid state combustion, Chernogolovka: ISMAN, (2000).
  18. V.M. Maslov, I.P Borovinskaya, A.G. Merzhanov. Combust Explos Shock Waves, 12, 5 (1976). https://doi.org/10.1007/bf00743167
  19. E.G Klimchuk, G.M. Avetisyan, V.T. Minasyan et al. Izv. AN. Him. 12, (1999).
  20. A.S. Mukasyan, C.E. Shuck. Intern. J. Self-Propag. High-Temp. 26, (2017). https://doi.org/10.3103/S1061386217030049
  21. C.E. Shuck, A.S. Mukasyan. Kinetics of Heterogeneous Self-Propagating High-Temperature Reactions. London: Advanced Chemical Kinetics, (2017). https://doi.org/10.5772/intechopen.70560
  22. A.G. Merzhanov, M.M. Kitain, U.I. Gol’shleger et al. Dokl. AN SSSR. 237, 2 (1977).
  23. A.K Filonenko, V.A. Bunin, V.I. Vershinnikov. Khim. fizika. 11, 2 (1992).
  24. M.A. Ponomarev, V.A. Shherbakov, A.S. Shtejnberg. Dokl. AN SSSR. 340, 5 (1995).
  25. B.S. Seplyarskii, S.G. Vadchenko. Dokl. Phys. Chem. 398, 203 (2004). https://doi.org/10.1023/B:DOPC.0000041487.87644.26
  26. S.I. Aljamovskij, Ju.G. Zajnulin, G.P. Shvejkin. Oksikarbidy i oksinitridy metallov IVA i VA podgrupp. Moskva: Nauka (1981).
  27. Je.I. Perov, V.A. Novozhenov. Zhurn. Himija rastitel’nogo syr’ja. 1, 1997.
  28. D. Miller, A. Abul, H. Delpouve et al. J. Mater. Chem. A. (2016). https://doi.org/10.1039/C6TA00042H
  29. J.M. Chappe., A.C. Fernandes, C. Moura et al. Surf.Coat.Tech. 206, (2012). https://doi.org/10.1016/j.surfcoat.2011.11.005
  30. K. Huang, Y. Li, Y. Xing. J. Mater. Res. 28, 454 (2013). https://doi.org/10.1557/jmr.2012.353
  31. M.W. Jr. Chase. NIST–JANAF thermochemical tables. J. Phys. Chem. Ref. Data. (1998).
  32. R.C. Wilhoit and D. Shiao, J. Chem. Eng. Data. 9, 4 (1964). https://doi.org/10.1021/je60023a038
  33. K.B. Kalmykov, N.E. Dmitrieva. Skanirujushhaja jelektronnaja mikroskopija i rentgeno-spektral’nyj analiz neorganicheskih materialov. Moskva: MGU. (2017).
  34. J.I. Goldstein, E. Dale et al. Microscopy and Microanalysis. 24, 6 (2018). https://doi.org/10.1017/S1431927618015271
  35. L.B. Mashkinov. Zavodskaja laboratorija. Diagnostika materialov. 80, 9 (2014).
  36. L.B. Mashkinov. Researchgate. (2015) https://doi.org/10.13140/RG.2.1.2316.4001
  37. K.G. Shkadinskij, B.I. Hajkin, A.G. Merzhanov. FGV. 1, 19 (1971).
  38. D.V. Korolev, K.A. Suvorov, S.G. Shalin. Poluchenie i obrabotka temperaturnogo profilya volny goreniya. SPb.: SPbGTI(TU). (2004).
  39. G.P. Luchinskij. Himija titana. Moskva: Himija. (1971).
  40. E.S. Domalski, E.D. Hearing. J. Phys. Chem. Ref. Data. 3, (1996). https://doi.org/10.1063/1.555985

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Photographs of the combustion processes of the mixture in different modes: a – discrete layer-by-layer mode I. Mixture 2Ti + C2H2O4; b – frontal mode II, mixture 6Ti + C2H2O4.

Download (433KB)
3. Fig. 2. Dependence of the combustion rate U on the ratio of the mole fractions of the initial reagents α = [Ti]/[C2H2O4]. The arrow indicates the maximum value of the parameter.

Download (27KB)
4. Fig. 3. Temperature T versus time τ for different ratios of mole fractions of the initial reagents [Ti]/[C2H2O4]. Curves 1–6 correspond to the titanium content in the initial mixture equal to 3, 6, 9, 12, 15, and 18 mol, respectively. The arrow indicates the maximum value of the parameter. The squares indicate the regions where the combustion surface of the thermocouples (Ts) reaches.

Download (54KB)
5. Fig. 4. Dependence of the chemical composition of products (C) on the ratio of mole fractions of the initial reagents α = [Ti]/[C2H2O4].

Download (30KB)
6. Fig. 5. Dependence of the phase content in the reaction products (I/Imax) on the ratio of the mole fractions of the initial reagents α = [Ti]/[C2H2O4]. In the figure, the arrow marks the maximum value of the parameter. Squares indicate the relative intensity of the characteristic peaks of the cubic syngony – [plane 200]; triangle – hexagonal, [101]; rhombus – rhombohedral, [104]; circles – tetragonal, [101].

Download (41KB)
7. Fig. 6. SEM images of a sample obtained from the combustion products of a 5Ti + C2H2O4 mixture are shown: a – secondary electron detector (SE, InLens); b – backscattered (reflected) electron detector (AsB).

Download (262KB)
8. Fig. 7. Dependence of the heat of combustion Qс on the ratio of the molar fractions of the initial reagents α = [Ti]/[C2H2O4]. The arrow indicates the maximum value of the parameter.

Download (23KB)
9. Fig. 8. Dependence of the completeness of conversion on the combustion surface (ηs) on the ratio of the molar fractions of the initial reagents α = [Ti]/[C2H2O4]. The dashed lines indicate the values ​​of ηs at Ts≡T, the beginning and end of the temperature range of the phase transition.

Download (25KB)

Copyright (c) 2025 Russian Academy of Sciences