Specificity of the mechanism of corrosion of sttel in the flow of acid solurion containing iron (III) salt
- Authors: Avdeev Y.G.1, Andreeva T.E.1, Panova A.V.1
-
Affiliations:
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Issue: Vol 44, No 2 (2025)
- Pages: 3-21
- Section: ВЛИЯНИЕ ВНЕШНИХ ФАКТОРОВ НА ФИЗИКО-ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ
- URL: https://vestnikugrasu.org/0207-401X/article/view/681122
- DOI: https://doi.org/10.31857/S0207401X25020016
- ID: 681122
Cite item
Abstract
The thermodynamic and kinetic aspects of corrosion of low carbon steels in a flow of H2SO4 solution containing Fe(III) sulfate, which occurs through parallel interaction of the metal with acid and Fe(III) salt, are considered. Potentiometric studies of a H2SO4 solution containing Fe(III) and Fe(II) salts showed that Fe(III) cations in these media are bound into complexes with sulfate anions, which reduces their oxidizing properties. Voltammetric studies of the behavior of steel in a flow of H2SO4 solution containing Fe(III) sulfate indicate that its corrosion includes the reaction of anodic ionization of iron, occurring in the kinetic region, and two cathodic partial reactions – the release of hydrogen and the reduction of Fe(III) cations to Fe(II), characterized by kinetic and diffusion control, respectively. The partial reaction of Fe(III) cations reduction, which occurs under diffusion control, determines the sensitivity of the entire corrosion process to the hydrodynamic parameters of the aggressive environment and the concentration of Fe(III) salt in it. A linear dependence of the steel corrosion rate on the square root of the rotation speed of the propeller mixer used to mix the aggressive environment is observed. Weak inhibition of steel destruction by a corrosion inhibitor in H2SO4 solutions containing Fe(III) salt is the result of the accelerating effect of Fe(III) cations on three partial electrode reactions of iron.
Full Text

About the authors
Ya. G. Avdeev
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Author for correspondence.
Email: avdeevavdeev@mail.ru
Russian Federation, Moscow
T. E. Andreeva
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: avdeevavdeev@mail.ru
Russian Federation, Moscow
A. V. Panova
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: avdeevavdeev@mail.ru
Russian Federation, Moscow
References
- Ya.G. Avdeev, Yu.I. Kuznetsov. Int. J. Corros. Scale Inhib., 11, 111 (2022). https://doi.org/10.17675/2305-6894-2022-11-1-6
- Yu.I. Kuznetsov. Russ. Chem. Rev., 73, 75 (2004). https://doi.org/10.1070/RC2004v073n01ABEH000864
- J. Barthel, R. Deiss, Mater. Corros., 72, 434 (2021). https://doi.org/10.1002/maco.202011977
- S.C. Perry, S.M. Gateman, L.I. Stephens et al., J. Electrochem. Soc., 166, (2019) C3186. https://doi.org/10.1149/2.0111911jes
- M. Pourbaix. Atlas of Electrochemical Equilibria in Aqueous Solutions, Houston: National Association of Corrosion Engineers (1974).
- H. Kaesche. Die Korrosion der Metalle. Physikalischchemische Prinzipien und Aktuelle Probleme, Springer, Berlin (1979) [in German].
- M.A. Pletnev, S.M. Reshetnikov. Prot. Met., 40, 460 (2004). https://doi.org/10.1023/B:PROM.0000043064.20548.e0
- L.I. Antropov. Theoretical Electrochemistry, Vysshaya Shkola, Moscow (1965) [in Russian].
- J.O’M. Bockris, D. Drazic, A.R. Despic, Electrochim. Acta, 4, 325 (1961). https://doi.org/10.1016/0013-4686(61)80026-1
- G.M. Florianovich, L.A. Sokolova, Ya.M. Kolotyrkin, Electrochim. Acta. 12, 879 (1967). https://doi.org/10.1016/0013-4686(67)80124-5
- Ya.G. Avdeev, T.E. Andreeva. Russ. J. Phys. Chem. A., 95, 1128 (2021). https://doi.org/10.1134/S0036024421060029
- Ya.G. Avdeev, T.A. Nenasheva, A.Yu. Luchkin, et al., Russ. J. Phys. Chem. B, 18, 111 (2024). https://doi.org/10.1134/S1990793124010044
- S.A. Umoren, M.M. Solomon. J. Ind. Eng. Chem., 21, 81 (2015). https://doi.org/10.1016/j.jiec.2014.09.033
- V.A. Zakharov, O.A. Songina, G.B. Bekturova, Zh. Anal. Khim. 31, 2212 (1976) [in Russian].
- Techniques of electrochemistry: Electrode Processes. V. 1. Eds.: E. Yeager and A.J. Salkind. Published by John Wiley & Sons Inc, New York (1972).
- Yu.Yu. Lur’e. Handbook in Analytic Chemistry, Khimiya, Moscow (1979) [in Russian].
- J.M. Casas, G. Crisóstomo, L. Cifuentes, Hydrometallurgy, 80, 254 (2005). https://doi.org/10.1016/j.hydromet.2005.07.012
- G. Yue, L. Zhao, O.G. Olvera et al. Hydrometallurgy, 147–148, 196 (2014). https://doi.org/10.1016/j.hydromet.2014.05.008
- R.A. Whiteker, N. Davidson. J. Am. Chem. Soc., 75, 3081 (1953). https://doi.org/10.1021/ja01109a010
- P. Sobron, F. Rull, F. Sobron et al. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 68, 1138 (2007). https://doi.org/10.1016/j.saa.2007.06.044
- J. Majzlan, S.C.B. Myneni. Environ. Sci. Technol., 39, 188 (2005). https://doi.org/10.1021/es049664p
- J.A. Plambeck, Electroanalytical Chemistry: Basic Principles and Applications, Wiley, New York (1982).
- S.M. Reshetnikov. Metal Acid Corrosion Inhibitors, Khimiya, Leningrad (1986) [in Russian].
- Yu.V. Pleskov, V.Yu. Filinovskii. Rotating Disc Electrode, Nauka, Moscow (1972) [in Russian].
- Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Eds. W. Xing, G. Yin, J. Zhang, Elsevier B.V. 171 (2014). https://doi.org/10.1016/B978-0-444–63278-4.00005-7
- Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Eds. W. Xing, G. Yin, J. Zhang, Elsevier B.V. 199 (2014). https://doi.org/10.1016/B978-0-444-63278-4.00006-9
- Short Handbook of Physical Chemical Values, Ed. by K.P. Mishchenko and A.A. Ravdel’, Khimiya, Leningrad (1967) [in Russian].
- L.I. Antropov, I.S. Pogrebova. Corrosion and Corrosion Protection, Vol. 2: Part of Results of Science and Technology Series, VINITI, Moscow (1973) [in Russian].
- Ya.G. Avdeev, O.A. Kireeva, D.S. Kuznetsov et al., Prot. Met. Phys. Chem. Surf., 54, 1298 (2018). https://doi.org/doi: 10.1134/S2070205118070055
- A.Y. Zaichenko, D.N. Podlesnyi, M.V. Salganskaya et al. Russ. J. Phys. Chem. B 15, 630 (2021). https://doi.org/10.1134/S1990793121040278
- A.A. Belyaev, B.S. Ermolaev. Russ. J. Phys. Chem. B, 17, 915 (2023). https://doi.org/10.1134/S199079312304022X
- N.N. Buravtsev. Russ. J. Phys. Chem. B, 16, 218 (2022). https://doi.org/10.1134/S1990793122020038
Supplementary files
