Specificity of the mechanism of corrosion of sttel in the flow of acid solurion containing iron (III) salt

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The thermodynamic and kinetic aspects of corrosion of low carbon steels in a flow of H2SO4 solution containing Fe(III) sulfate, which occurs through parallel interaction of the metal with acid and Fe(III) salt, are considered. Potentiometric studies of a H2SO4 solution containing Fe(III) and Fe(II) salts showed that Fe(III) cations in these media are bound into complexes with sulfate anions, which reduces their oxidizing properties. Voltammetric studies of the behavior of steel in a flow of H2SO4 solution containing Fe(III) sulfate indicate that its corrosion includes the reaction of anodic ionization of iron, occurring in the kinetic region, and two cathodic partial reactions – the release of hydrogen and the reduction of Fe(III) cations to Fe(II), characterized by kinetic and diffusion control, respectively. The partial reaction of Fe(III) cations reduction, which occurs under diffusion control, determines the sensitivity of the entire corrosion process to the hydrodynamic parameters of the aggressive environment and the concentration of Fe(III) salt in it. A linear dependence of the steel corrosion rate on the square root of the rotation speed of the propeller mixer used to mix the aggressive environment is observed. Weak inhibition of steel destruction by a corrosion inhibitor in H2SO4 solutions containing Fe(III) salt is the result of the accelerating effect of Fe(III) cations on three partial electrode reactions of iron.

Full Text

Restricted Access

About the authors

Ya. G. Avdeev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: avdeevavdeev@mail.ru
Russian Federation, Moscow

T. E. Andreeva

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
Russian Federation, Moscow

A. V. Panova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: avdeevavdeev@mail.ru
Russian Federation, Moscow

References

  1. Ya.G. Avdeev, Yu.I. Kuznetsov. Int. J. Corros. Scale Inhib., 11, 111 (2022). https://doi.org/10.17675/2305-6894-2022-11-1-6
  2. Yu.I. Kuznetsov. Russ. Chem. Rev., 73, 75 (2004). https://doi.org/10.1070/RC2004v073n01ABEH000864
  3. J. Barthel, R. Deiss, Mater. Corros., 72, 434 (2021). https://doi.org/10.1002/maco.202011977
  4. S.C. Perry, S.M. Gateman, L.I. Stephens et al., J. Electrochem. Soc., 166, (2019) C3186. https://doi.org/10.1149/2.0111911jes
  5. M. Pourbaix. Atlas of Electrochemical Equilibria in Aqueous Solutions, Houston: National Association of Corrosion Engineers (1974).
  6. H. Kaesche. Die Korrosion der Metalle. Physikalischchemische Prinzipien und Aktuelle Probleme, Springer, Berlin (1979) [in German].
  7. M.A. Pletnev, S.M. Reshetnikov. Prot. Met., 40, 460 (2004). https://doi.org/10.1023/B:PROM.0000043064.20548.e0
  8. L.I. Antropov. Theoretical Electrochemistry, Vysshaya Shkola, Moscow (1965) [in Russian].
  9. J.O’M. Bockris, D. Drazic, A.R. Despic, Electrochim. Acta, 4, 325 (1961). https://doi.org/10.1016/0013-4686(61)80026-1
  10. G.M. Florianovich, L.A. Sokolova, Ya.M. Kolotyrkin, Electrochim. Acta. 12, 879 (1967). https://doi.org/10.1016/0013-4686(67)80124-5
  11. Ya.G. Avdeev, T.E. Andreeva. Russ. J. Phys. Chem. A., 95, 1128 (2021). https://doi.org/10.1134/S0036024421060029
  12. Ya.G. Avdeev, T.A. Nenasheva, A.Yu. Luchkin, et al., Russ. J. Phys. Chem. B, 18, 111 (2024). https://doi.org/10.1134/S1990793124010044
  13. S.A. Umoren, M.M. Solomon. J. Ind. Eng. Chem., 21, 81 (2015). https://doi.org/10.1016/j.jiec.2014.09.033
  14. V.A. Zakharov, O.A. Songina, G.B. Bekturova, Zh. Anal. Khim. 31, 2212 (1976) [in Russian].
  15. Techniques of electrochemistry: Electrode Processes. V. 1. Eds.: E. Yeager and A.J. Salkind. Published by John Wiley & Sons Inc, New York (1972).
  16. Yu.Yu. Lur’e. Handbook in Analytic Chemistry, Khimiya, Moscow (1979) [in Russian].
  17. J.M. Casas, G. Crisóstomo, L. Cifuentes, Hydrometallurgy, 80, 254 (2005). https://doi.org/10.1016/j.hydromet.2005.07.012
  18. G. Yue, L. Zhao, O.G. Olvera et al. Hydrometallurgy, 147–148, 196 (2014). https://doi.org/10.1016/j.hydromet.2014.05.008
  19. R.A. Whiteker, N. Davidson. J. Am. Chem. Soc., 75, 3081 (1953). https://doi.org/10.1021/ja01109a010
  20. P. Sobron, F. Rull, F. Sobron et al. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 68, 1138 (2007). https://doi.org/10.1016/j.saa.2007.06.044
  21. J. Majzlan, S.C.B. Myneni. Environ. Sci. Technol., 39, 188 (2005). https://doi.org/10.1021/es049664p
  22. J.A. Plambeck, Electroanalytical Chemistry: Basic Principles and Applications, Wiley, New York (1982).
  23. S.M. Reshetnikov. Metal Acid Corrosion Inhibitors, Khimiya, Leningrad (1986) [in Russian].
  24. Yu.V. Pleskov, V.Yu. Filinovskii. Rotating Disc Electrode, Nauka, Moscow (1972) [in Russian].
  25. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Eds. W. Xing, G. Yin, J. Zhang, Elsevier B.V. 171 (2014). https://doi.org/10.1016/B978-0-444–63278-4.00005-7
  26. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Eds. W. Xing, G. Yin, J. Zhang, Elsevier B.V. 199 (2014). https://doi.org/10.1016/B978-0-444-63278-4.00006-9
  27. Short Handbook of Physical Chemical Values, Ed. by K.P. Mishchenko and A.A. Ravdel’, Khimiya, Leningrad (1967) [in Russian].
  28. L.I. Antropov, I.S. Pogrebova. Corrosion and Corrosion Protection, Vol. 2: Part of Results of Science and Technology Series, VINITI, Moscow (1973) [in Russian].
  29. Ya.G. Avdeev, O.A. Kireeva, D.S. Kuznetsov et al., Prot. Met. Phys. Chem. Surf., 54, 1298 (2018). https://doi.org/doi: 10.1134/S2070205118070055
  30. A.Y. Zaichenko, D.N. Podlesnyi, M.V. Salganskaya et al. Russ. J. Phys. Chem. B 15, 630 (2021). https://doi.org/10.1134/S1990793121040278
  31. A.A. Belyaev, B.S. Ermolaev. Russ. J. Phys. Chem. B, 17, 915 (2023). https://doi.org/10.1134/S199079312304022X
  32. N.N. Buravtsev. Russ. J. Phys. Chem. B, 16, 218 (2022). https://doi.org/10.1134/S1990793122020038

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Fragment of the E–pH diagram of the stability fields of metallic Fe and Fe(III) cations in water at a temperature of 25 °C and 101.3 kPa total pressure [5]: 1 – boundary line of the stability field of metallic Fe; 2, 3 – boundary lines of the stability field of Fe(III) cations; 4, 5 – lines of the stability limits of water. Only Fe, Fe(OH)2 and Fe(OH)3 are considered solid phases. The stability fields are given for cases when lg aFe(III) = lg aFe(II) and correspond to the values ​​-6, -4, -2 and 0.

Download (145KB)
3. Fig. 2. Reference [15] and experimental (points) values ​​of the potentials of a platinum electrode in a 2 M H2SO4 solution deaerated with argon, containing Fe(III) and Fe(II) sulfates (CFe(III) + CFe(II) = 0.1 M), depending on the ratio of the Fe(III) and Fe(II) content at different temperatures, °C: 1 – 20, 2 – 40, 3 – 60, 4 – 80, 5 – 95.

Download (72KB)
4. Fig. 3. Cyclic voltammograms of the Pt electrode in a 2 M H2SO4 solution deaerated with argon and containing Fe(III), mol/l: 1 – 0.01, 2 – 0.04, 3 – 0.10; v = 0.10 V/s, t = 25 °C.

Download (38KB)
5. Fig. 4. Polarization curves of a steel disk of the St3 brand in a 2 M H2SO4 solution (a), inhibited by 5 mM TBEAC + 5 mM KI (b), in the presence of Fe(III), mol/l: 1, 1 ′ – 0; 2, 2 ′ – 0.02; 3, 3 ′ – 0.05; 4, 4 ′ – 0.10; 5, 5 ′ – 0.20; 1–5 – cathodic reaction; 1 ′–5 ′ – anodic reaction; n = 460 rpm.

Download (52KB)
6. Fig. 5. Dependence of the cathode current density on the rotation frequency of a steel disk of the St3 brand in a 2 M H2SO4 solution (a), inhibited by 5 mM TBEAC + 5 mM KI (b), in the presence of Fe(III), mol/l: 1 – 0, 2 – 0.02, 3 – 0.05, 4 – 0.10, 5 – 0.20 at E = –0.30 V, t = 25 °C.

Download (56KB)
7. Fig. 6. Dependence of the corrosion rate of St3 steel in 2 M H2SO4 solutions with different Fe(III) cation contents (1 – 0, 2 – 0.005, 3 – 0.01, 4 – 0.02, 5 – 0.05, 6 – 0.1 M) on the propeller stirrer rotation frequency in a corrosive environment: a, a′ – without additives; b, b′ – 5 mM TBEAC + 5 mM KI; a′, b′ — plotted with a correction for natural convection. Duration of experiments – 2 h, t = (20 ± 2) °C.

Download (166KB)

Copyright (c) 2025 Russian Academy of Sciences