Nanosized platform based on magnetic nanoparticles for photodynamic therapy in oncology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hybrid nanosystems based on iron oxide nanoparticles (IONPs) and human serum albumin (HSA) have been synthesized. Size and composition of HSA@IONPs nanosystems were characterized using UV/visible spectrophotometry (particularly, using the Bradford protein assay), dynamic light scattering and electron magnetic resonance. Methylene blue, as a model photosensitizer, was non-covalently bound to the nanosystems (5.8 μg per 1 mg of IONPs). The nanosystems were subjected to phototoxicity studies to confirm their suitability for photodynamic therapy, and the survival of cultured human breast adenocarcinoma MCF-7 tumor cells was analyzed. An increase in photoinduced cytotoxicity was observed when the photosensitizer was accumulated by cells upon delivery by the nanosystems, compared with a free photosensitizer at equivalent concentrations. HSA@IONPs are discussed as a promising platform for targeted delivery of a photosensitizer to tumor cells.

Full Text

Restricted Access

About the authors

A. V. Bychkova

Emanuel Institute of Biochemical Physics Russian Academy of Sciences

Author for correspondence.
Email: anna.v.bychkova@gmail.com
Russian Federation, Moscow

A. A. Markova

Emanuel Institute of Biochemical Physics Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Russian Federation, Moscow

M. T. Nguyen

Emanuel Institute of Biochemical Physics Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Russian Federation, Moscow

M. A. Gradova

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Russian Federation, Moscow

M. G. Gorobets

Emanuel Institute of Biochemical Physics Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Russian Federation, Moscow

M. V. Motyakin

Emanuel Institute of Biochemical Physics Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Russian Federation, Moscow

M. I. Abdullina

Emanuel Institute of Biochemical Physics Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Russian Federation, Moscow

A. V. Toroptseva

Emanuel Institute of Biochemical Physics Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Russian Federation, Moscow

V. A. Kuzmin

Emanuel Institute of Biochemical Physics Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Russian Federation, Moscow

References

  1. A. Aires, S.M. Ocampo, D. Cabrera, et al., J. Mater. Chem. B 3, 6239 (2015). https://doi.org/10.1039/C5TB00833F
  2. L.Q. Thao, H.J. Byeon, C. Lee, et al., Pharm. Res. 33, 615 (2016). https://doi.org/10.1007/s11095-015-1814-z
  3. H. Nosrati, M. Salehiabar, H.K. Manjili, et al., Int. J. Biol. Macromol. Elsevier B.V. 108, 909 (2018). https://doi.org/10.1016/j.ijbiomac.2017.10.180
  4. A.S. Chubarov, Magnetochemistry 8, 13 (18 pages) (2022). https://doi.org/10.3390/magnetochemistry8020013
  5. L.L. Israel, A. Galstyan, E. Holler, et al., J. Control. Release 320, 45 (2020). https://doi.org/10.1016/j.jconrel.2020.01.009
  6. A. V. Bychkova, M.N. Yakunina, M. V. Lopukhova, et al., Pharmaceutics 14, 2771 (2022). https://doi.org/10.3390/pharmaceutics14122771
  7. E. Vismara, C. Bongio, A. Coletti, et al., Molecules 22, 1030 (2017). https://doi.org/10.3390/molecules22071030
  8. J. Estelrich, and M. Busquets, Molecules 23, 1567 (2018). https://doi.org/10.3390/molecules23071567
  9. D.V. Pominova, I.D. Romanishkin, E.A. Plotnikova, et al., Biomed. Photonics 10, 44 (2021). https://doi.org/10.24931/2413- 9432-2021-10-4-44-58
  10. A. Baki, A. Remmo, N. Löwa, et al., Int. J. Mol. Sci. 22, 6235 (2021). https://doi.org/10.3390/ijms22126235
  11. C. Tao, Q. Zheng, L. An, et al., Nanomaterials 9, 170 (2019). https://doi.org/10.3390/nano9020170
  12. A. Tzameret, H. Ketter-Katz, V. Edelshtain, et al., J. Nanobiotechnology 17, 3 (2019). https://doi.org/10.1186/s12951-018-0438-y
  13. X. Liang, M. Chen, P. Bhattarai, et al., ACS Nano 15, 20164 (2021). https://doi.org/10.1021/acsnano.1c08108
  14. D. Sleep, Expert Opin. Drug Deliv. 12, 793 (2015). https://doi.org/10.1517/17425247.2015.993313
  15. A.S. Shurshina, A.R. Galina, and E.I. Kulish, Russ. J. Phys. Chem. B 16, 353 (2022). https://doi.org/10.1134/S1990793122020221
  16. M.A. Kolyvanova, M.A. Klimovich, O. V. Dement’eva, et al., Russ. J. Phys. Chem. B 17, 206 (2023). https://doi.org/10.1134/S1990793123010062
  17. H. Li, Y. Wang, Q. Tang, et al., Acta Biomater. 129, 57 (2021). https://doi.org/10.1016/j.actbio.2021.05.019
  18. D. Baimanov, J. Wang, J. Zhang, et al., Nat. Commun. 13, 5389 (2022). https://doi.org/10.1038/s41467-022-33044-y
  19. F. Pederzoli, G. Tosi, M.A. Vandelli, et al., Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 9, 1 (2017). https://doi.org/10.1002/wnan.1467
  20. A.B. Seabra, Metal Nanoparticles in Pharma Cham: Springer International Publishing 3 (2017). https://doi.org/10.1007/978-3-319-63790-7_1
  21. M. Nafiujjaman, V. Revuri, M. Nurunnabi, et al., Chem. Commun. 51, 5687 (2015). https://doi.org/10.1039/C4CC10444G
  22. A. Amirshaghaghi, L. Yan, J. Miller, et al., Sci. Rep. 9, 2613 (2019). https://doi.org/10.1038/s41598-019-39036-1
  23. H. Yao, and J.-Y. Zhou, Front. Bioeng. Biotechnol. 11, (2023). https://doi.org/10.3389/fbioe.2023.1248283
  24. C.A. Henriques, S.M.A. Pinto, J. Pina, et al., Dalt. Trans. 45, 16211 (2016). https://doi.org/10.1039/C6DT02428A
  25. M. Thandu, V. Rapozzi, L. Xodo, et al., Chempluschem 79, 90 (2014). https://doi.org/10.1002/cplu.201300276
  26. M. Nowostawska, S.A. Corr, S.J. Byrne, et al., J. Nanobiotechnology 9, 13 (2011). https://doi.org/10.1186/1477-3155-9-13
  27. J.-P. Mbakidi, F. Brégier, T.-S. Ouk, et al., Chempluschem 80, 1416 (2015). https://doi.org/10.1002/cplu.201500087
  28. P. Ostroverkhov, A. Semkina, V. Naumenko, et al., Pharmaceutics 10, 284 (2018). https://doi.org/10.3390/pharmaceutics10040284
  29. N. V. Suvorov, M.A. Grin, A.M. Popkov, et al., Macroheterocycles 9, 175 (2016). https://doi.org/10.6060/mhc160645s
  30. A. Ashkbar, F. Rezaei, F. Attari, et al., Sci. Rep. 10, 21206 (2020). https://doi.org/10.1038/s41598-020-78241-1
  31. Z. Deng, G. Qiao, L. Ma, et al., ACS Appl. Nano Mater. 4, 13523 (2021). https://doi.org/10.1021/acsanm.1c02929
  32. N. Kwon, H. Kim, X. Li, et al., Chem. Sci. 12, 7248 (2021). https://doi.org/10.1039/D1SC01125A
  33. M.A. Klimovich, N.N. Sazhina, A.S. Radchenko, et al. 15, 93 (2021). https://doi.org/10.1134/S1990793121010206
  34. A.A. Kostyukov, M.G. Mestergazi, A.E. Egorov, et al., Dye. Pigment. 210, 111043 (2023). https://doi.org/10.1016/j.dyepig.2022.111043
  35. I.D. Burtsev, A.E. Egorov, A.A. Kostyukov, et al., Russ. J. Phys. Chem. B 16, 109 (2022). https://doi.org/10.1134/S1990793122010195
  36. A. V. Zaitsev, E.G. Kononova, A.A. Markova, et al., Dye. Pigment. 207, 110711 (2022). https://doi.org/10.1016/j.dyepig.2022.110711
  37. J. Luo, Z. Miao, X. Huang, et al., Front. Bioeng. Biotechnol. 11, (2023). https://doi.org/10.3389/fbioe.2023.1132591
  38. A.S. Tatikolov, Russ. J. Phys. Chem. B 15, 33 (2021). https://doi.org/10.1134/S1990793121010280
  39. G. Capistrano, A.A. Sousa-Junior, R.A. Silva, et al., ACS Biomater. Sci. Eng. 6, 4523 (2020). https://doi.org/10.1021/acsbiomaterials.0c00164
  40. P. V Ostroverkhov, A.S. Semkina, V.A. Naumenko, et al., J. Colloid Interface Sci. Elsevier Inc. 537, 132 (2019). https://doi.org/10.1016/j.jcis.2018.10.087
  41. A.R. Simioni, M.M.A. Rodrigues, F.L. Primo, et al., J. Nanosci. Nanotechnol. 11, 3604 (2011). https://doi.org/10.1166/jnn.2011.3724
  42. J.P. Tardivo, A. Del Giglio, C.S. de Oliveira, et al., Photodiagnosis Photodyn. Ther. 2, 175 (2005). https://doi.org/10.1016/S1572-1000(05)00097-9
  43. A.F. dos Santos, L.F. Terra, R.A.M. Wailemann, et al., BMC Cancer 17, 194 (2017). https://doi.org/10.1186/s12885-017-3179-7
  44. Y. Zhang, Z. Ye, R. He, et al., Colloids Surfaces B Biointerfaces 224, 113201 (2023). https://doi.org/10.1016/j.colsurfb.2023.113201
  45. D.B. Tada, L.L.R. Vono, E.L. Duarte, et al., Langmuir 23, 8194 (2007). https://doi.org/10.1021/la700883y
  46. V.H. Toledo, T.M. Yoshimura, S.T. Pereira, et al., J. Photochem. Photobiol. B Biol. 209, 111956 (2020). https://doi.org/10.1016/j.jphotobiol.2020.111956
  47. X. Zhao, Z. Chen, H. Zhao, et al., RSC Adv. 4, 62153 (2014). https://doi.org/10.1039/C4RA10801A
  48. A. V. Bychkova, M. V. Lopukhova, L.A. Wasserman, et al., Biochim. Biophys. Acta - Proteins Proteomics 1868, 140300 (2020). https://doi.org/10.1016/j.bbapap.2019.140300
  49. A. V. Bychkova, M. V. Lopukhova, L.A. Wasserman, et al., Int. J. Biol. Macromol. Elsevier B.V. 194, 654 (2022). https://doi.org/10.1016/j.ijbiomac.2021.11.110
  50. Y. Usui, Chem. Lett. 2, 743 (1973). https://doi.org/10.1246/cl.1973.743
  51. P. Najafi, and H. Kouchakzadeh, Nanomedicine J. 6, 55 (2019). https://doi.org/10.22038/NMJ.2019.06.008
  52. Y.-J. Hu, W. Li, Y. Liu, et al., J. Pharm. Biomed. Anal. 39, 740 (2005). https://doi.org/10.1016/j.jpba.2005.04.009
  53. A. V. Povolotskiy, D.A. Soldatova, D.A. Lukyanov, et al., Russ. J. Phys. Chem. B 17, 1398 (2023).
  54. E. Alarcón, A.M. Edwards, A. Aspee, et al., Photochem. Photobiol. Sci. 9, 93 (2010). https://doi.org/10.1039/b9pp00091g
  55. L.-L. He, Y.-X. Wang, X.-X. Wu, et al., Luminescence 30, 1380 (2015). https://doi.org/10.1002/bio.2910
  56. C.-W. Hsu, N.-C. Cheng, M.-Y. Liao, et al., Nanomaterials 10, 1351 (2020). https://doi.org/10.3390/nano10071351

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Number of publications in the PubMed database by year, by the keyword “nanoparticles” and additional keywords indicated in the figure: “serum albumin”, “iron oxide”, “iron oxides”, “magnetite”.

Download (72KB)
3. Fig. 2. Schematic representation of the stages of preparation of samples of hybrid nanosystems MS–(HSA@NCHO): obtaining nanoparticles in an albumin coating and non-covalent binding of nanoparticles to methylene blue.

Download (57KB)
4. Fig. 3. Absorption spectra of methylene blue in water (1) and in the supernatant solution after magnetic separation of MS–(HSA@NCHO) (2).

Download (25KB)
5. Fig. 4. Volume distributions of particle sizes obtained by dynamic light scattering in the control sample of NChOZh (left) and the experimental sample of ChSA@NChOZh (right).

Download (46KB)
6. Fig. 5. Dark (1) and photoinduced cytotoxicity (2) of HSA@NCHO, MS–(HSA@NCHO) and MS on MCF-7 cells.

Download (19KB)

Copyright (c) 2024 Russian Academy of Sciences