Phase behaviour of V-shaped liquid crystal/polymer mixture
- Authors: Aliev M.A.1, Bibikov S.B.1
-
Affiliations:
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- Issue: Vol 43, No 11 (2024)
- Pages: 102-111
- Section: Chemical physics of polymeric materials
- URL: https://vestnikugrasu.org/0207-401X/article/view/680983
- DOI: https://doi.org/10.31857/S0207401X24110121
- ID: 680983
Cite item
Abstract
The phase behavior of mixtures of linear flexible polymers and V-shaped liquid crystals is inspected using a combination of Flory – Huggins theory of polymer solutions and Landau – de Gennes theory of nematic ordering. The influence of the architecture of V-shaped molecules on the system’s phase diagrams is examined.
Full Text

About the authors
M. A. Aliev
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Author for correspondence.
Email: maasept@yandex.ru
Russian Federation, Moscow
S. B. Bibikov
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: maasept@yandex.ru
Russian Federation, Moscow
References
- M. Mucha, Prog. in Polymer Science 28, 837 (2003). https://www.sciencedirect.com/science/article/pii/S007967000200117X
- A.E. Chalykh, E.S. Zhavoronok, Z. A. Kochnova, et al., Russian Journal of Physical Chemistry B, 3, 507 (2009). https://doi.org/10.1134/S1990793109030269
- S.G. Karpova, E.G. Milyushkina, L.R. Lusova, et al., Russ. J. of Phys. Chem. B. 12, 285–292 (2018). https://doi.org/10.1134/S1990793118020070
- S.G. Karpova, Yu.A. Naumova, Yu.K. Lukanina, et al., Russ. J. of Phys. Chem. B 8, 403 (2014) https://doi.org/10.1134/S1990793114030063
- A.P. Vorotnikov, Russ. J. of Phys. Chem. B 9, 866 (2015) https://doi.org/10.1134/S1990793115050139
- M.V. Podzorova, Yu. V. Tertyshnaya and A.V. Khramkova, Russ. J. of Phys. Chem. B. 17, 163 (2023). https://doi.org/10.1134/S1990793123010098
- M. A. Kolyvanova, M. A. Klimovich, O. V. Dement’eva, et al., Russian Journal of Physical Chemistry B 17, 206 (2023). https://doi.org/10.1134/S1990793123010062
- Y.V.Tertyshnaya, A. V. Krivandin and O. V. Shatalova, Russ. J. Phys. Chem. B 17, 171-176 (2023). https://doi.org/10.1134/S1990793123010128
- N.M. Livanova, E.S.Pravada, L.A. Kovaleva, et al., Russ. J. Phys. Chem. B 17, 738-744 (2023). https://doi.org/10.1134/S1990793123030077
- T.I. Medintseva, , A.I.Sergeev , N.G. Shilkina et al., Russ. J. Phys. Chem. B 17, 755-763 (2023). https://doi.org/10.1134/S1990793123030090
- Y.V.Tertyshnaya, A.V. Khvatov and A.A. Popov, Russ. J. Phys. Chem. B 16, 162–166 (2022). https://doi.org/10.1134/S1990793122010304
- F. Brochard, J. Jouffroy and P. Levinson, J. Phys. France 45, 1125 (1984). https://doi.org/10.1051/jphys:019840045070112500
- F. Hardouin, G. Sigaud, M. Achard. In: Shibaev, V.P., Lam, L., eds. Liquid Crystalline and Mesomorphic Polymers. Springer-Verlag, 121_148 (1993).
- B. Kronberg and D. Patterson, J. Chem. Soc., Faraday Trans. 72, 1686 (1976). http://dx.doi.org/10.1039/F29767201686
- V. K. Kelkar and C. Manohar, Molecular Crystals and Liquid Crystals 133, 267 (1986). https://doi.org/10.1080/00268948608080818
- M. Ballauff, Molecular Crystals and Liquid Crystals 136, 175 (1986). https://doi.org/10.1080/00268948608074726
- C. Shen, T.Kyu. The Journal of Chemical Physics 102, 556 (1995). https://doi.org/10.1063/1.469435
- F. Benmouna, L. Bedjaoui, U. Maschke, et al., Macromolecular Theory and Simulations 7, 599 (1998). https://doi.org/10.1002/(SICI)1521-3919(19981101) 7:6<599::AID-MATS599>3.0.CO;2-3
- V. Amoskov and T. Birshtein, Polymer Science Series C; 52, 44 (2010).
- A. Matsuyama and T. Kato, The Journal of Chemical Physics 105, 1654 (1996). https://doi.org/10.1063/1.472024
- A. Matsuyama and T. Kato, Phys Rev E 59, 763 (1999). https://link.aps.org/doi/10.1103/PhysRevE.59.763
- P.J. Flory. Principles of polymer chemistry. New York: Cornell University Press; 1953.
- W. Maier and A. Saupe, Zeitschrift fur Naturforschung A, 14, 882 (1959).
- E.R. Soule and A.D. Rey, Liquid Crystals, 38, 201 (2011). https://doi.org/10.1080/02678292.2010.539303
- J. Katriel, G.F. Kventsel, G.R. Luckhurst. and T.J. Sluckin. Liquid Crystals 1, 337 (1986). https://doi.org/10.1080/02678298608086667
- A. Matsuyama, R. M. L. Evans and M. E. Cates, Phys. Rev. E 61, 2977 (2000). https://link.aps.org/doi/10.1103/PhysRevE.61.2977
- S.K. Das and A.D. Rey, Computational Materials Science, 29, 152 (2004). https://www.sciencedirect.com/science/article/pii/S0927025603001824
- A.D. Rey. Soft Matter, 6, 3402 (2010). http://dx.doi.org/10.1039/B921576J
- P.G. de Gennes, J. Prost, The Physics of Liquid Crystals. Oxford: Clarendon Press; 1993.
- A. Jakli. Liquid Crystals Reviews, 1, 65 (2013). https://doi.org/10.1080/21680396.2013.803701
- G.R. Luckhurst, T.J. Sluckin, eds. Biaxial Nematic Liquid Crystals Theory, Simulation, and Experiment. Chichester, UK: Wiley; (2015).
- M. A. Aliev, E.A. Ugolkova and N.Y. Kuzminyh, The Journal of Chemical Physics 145, 084908 (2016). https://doi.org/10.1063/1.4961662
- S.F. Edwards. Proceedings of the Physical Society 88, 265 (1966). https://dx.doi.org/10.1088/0370-1328/88/2/301
- E.F. Gramsbergen, L. Longa and W.H. de Jeu, Physics Reports 135, 195 (1986). https://www.sciencedirect.com/science/article/pii/ 0370157386900074
- L.D. Landau, E.M. Lifshitz. Statistical Physics: 2nd ed. Pergamon, Oxford. 1969.
- J.R. Dorgan. Liquid Crystals 10, 347 (1991). https://doi.org/10.1080/02678299108026281
- C.C. Riccardi, J. Borrajo and R.J.J. Williams, The Journal of Chemical Physics 108, 2571 (1998). https://doi.org/10.1063/1.475641
Supplementary files
Supplementary Files
Action
1.
JATS XML
2.
Fig. 1. Model of a V-shaped molecule formed by two rigid segments connected at an external angle α. The molecule consists of monomer units (designated as 1, 2… NA), the total number of which is equal to NA.
Download (18KB)
3.
Fig. 2. Phase diagrams of a polymer/V-shaped LC mixture at φ = 1/2 and different external angles between the LC segments: a – a = 0, b – a = 0.524 rad, c – a = 0.611 rad, d – a = 0.6106. Binodals are shown as solid lines, liquid–liquid spinodal – as a dotted line, liquid–nematic phase spinodal – as a dashed-dotted line. The letters C, E, and P denote, respectively, the critical point, the eutectic point, and the point corresponding to the smallest value X of the mixture composition at which the single-phase nematic state N is realized.
Download (92KB)
4.
Fig. 3. a – Phase diagram for a mixture of symmetric V-shaped molecules at a = 1.32 rad, NA = 4, NB = 10; b – behavior of eigenvalues of tensor (2) depending on temperature. The solid line corresponds to the smallest ES, different from the other two coinciding ES (shown by the dotted line).
Download (39KB)
5.
Fig. 4. Phase diagrams of a polymer/V-shaped LC mixture at a fixed value of the angle between the segments (a = p/6) for different degrees of asymmetry φ of the liquid crystal: (a) φ = 0, (b) φ = 1/6, (c) φ = 1/3 and (d) φ = 1/2. The notations are the same as in Fig. 2.
Download (92KB)
