Phase behaviour of V-shaped liquid crystal/polymer mixture

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The phase behavior of mixtures of linear flexible polymers and V-shaped liquid crystals is inspected using a combination of Flory – Huggins theory of polymer solutions and Landau – de Gennes theory of nematic ordering. The influence of the architecture of V-shaped molecules on the system’s phase diagrams is examined.

Full Text

Restricted Access

About the authors

M. A. Aliev

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: maasept@yandex.ru
Russian Federation, Moscow

S. B. Bibikov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: maasept@yandex.ru
Russian Federation, Moscow

References

  1. M. Mucha, Prog. in Polymer Science 28, 837 (2003). https://www.sciencedirect.com/science/article/pii/S007967000200117X
  2. A.E. Chalykh, E.S. Zhavoronok, Z. A. Kochnova, et al., Russian Journal of Physical Chemistry B, 3, 507 (2009). https://doi.org/10.1134/S1990793109030269
  3. S.G. Karpova, E.G. Milyushkina, L.R. Lusova, et al., Russ. J. of Phys. Chem. B. 12, 285–292 (2018). https://doi.org/10.1134/S1990793118020070
  4. S.G. Karpova, Yu.A. Naumova, Yu.K. Lukanina, et al., Russ. J. of Phys. Chem. B 8, 403 (2014) https://doi.org/10.1134/S1990793114030063
  5. A.P. Vorotnikov, Russ. J. of Phys. Chem. B 9, 866 (2015) https://doi.org/10.1134/S1990793115050139
  6. M.V. Podzorova, Yu. V. Tertyshnaya and A.V. Khramkova, Russ. J. of Phys. Chem. B. 17, 163 (2023). https://doi.org/10.1134/S1990793123010098
  7. M. A. Kolyvanova, M. A. Klimovich, O. V. Dement’eva, et al., Russian Journal of Physical Chemistry B 17, 206 (2023). https://doi.org/10.1134/S1990793123010062
  8. Y.V.Tertyshnaya, A. V. Krivandin and O. V. Shatalova, Russ. J. Phys. Chem. B 17, 171-176 (2023). https://doi.org/10.1134/S1990793123010128
  9. N.M. Livanova, E.S.Pravada, L.A. Kovaleva, et al., Russ. J. Phys. Chem. B 17, 738-744 (2023). https://doi.org/10.1134/S1990793123030077
  10. T.I. Medintseva, , A.I.Sergeev , N.G. Shilkina et al., Russ. J. Phys. Chem. B 17, 755-763 (2023). https://doi.org/10.1134/S1990793123030090
  11. Y.V.Tertyshnaya, A.V. Khvatov and A.A. Popov, Russ. J. Phys. Chem. B 16, 162–166 (2022). https://doi.org/10.1134/S1990793122010304
  12. F. Brochard, J. Jouffroy and P. Levinson, J. Phys. France 45, 1125 (1984). https://doi.org/10.1051/jphys:019840045070112500
  13. F. Hardouin, G. Sigaud, M. Achard. In: Shibaev, V.P., Lam, L., eds. Liquid Crystalline and Mesomorphic Polymers. Springer-Verlag, 121_148 (1993).
  14. B. Kronberg and D. Patterson, J. Chem. Soc., Faraday Trans. 72, 1686 (1976). http://dx.doi.org/10.1039/F29767201686
  15. V. K. Kelkar and C. Manohar, Molecular Crystals and Liquid Crystals 133, 267 (1986). https://doi.org/10.1080/00268948608080818
  16. M. Ballauff, Molecular Crystals and Liquid Crystals 136, 175 (1986). https://doi.org/10.1080/00268948608074726
  17. C. Shen, T.Kyu. The Journal of Chemical Physics 102, 556 (1995). https://doi.org/10.1063/1.469435
  18. F. Benmouna, L. Bedjaoui, U. Maschke, et al., Macromolecular Theory and Simulations 7, 599 (1998). https://doi.org/10.1002/(SICI)1521-3919(19981101) 7:6<599::AID-MATS599>3.0.CO;2-3
  19. V. Amoskov and T. Birshtein, Polymer Science Series C; 52, 44 (2010).
  20. A. Matsuyama and T. Kato, The Journal of Chemical Physics 105, 1654 (1996). https://doi.org/10.1063/1.472024
  21. A. Matsuyama and T. Kato, Phys Rev E 59, 763 (1999). https://link.aps.org/doi/10.1103/PhysRevE.59.763
  22. P.J. Flory. Principles of polymer chemistry. New York: Cornell University Press; 1953.
  23. W. Maier and A. Saupe, Zeitschrift fur Naturforschung A, 14, 882 (1959).
  24. E.R. Soule and A.D. Rey, Liquid Crystals, 38, 201 (2011). https://doi.org/10.1080/02678292.2010.539303
  25. J. Katriel, G.F. Kventsel, G.R. Luckhurst. and T.J. Sluckin. Liquid Crystals 1, 337 (1986). https://doi.org/10.1080/02678298608086667
  26. A. Matsuyama, R. M. L. Evans and M. E. Cates, Phys. Rev. E 61, 2977 (2000). https://link.aps.org/doi/10.1103/PhysRevE.61.2977
  27. S.K. Das and A.D. Rey, Computational Materials Science, 29, 152 (2004). https://www.sciencedirect.com/science/article/pii/S0927025603001824
  28. A.D. Rey. Soft Matter, 6, 3402 (2010). http://dx.doi.org/10.1039/B921576J
  29. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals. Oxford: Clarendon Press; 1993.
  30. A. Jakli. Liquid Crystals Reviews, 1, 65 (2013). https://doi.org/10.1080/21680396.2013.803701
  31. G.R. Luckhurst, T.J. Sluckin, eds. Biaxial Nematic Liquid Crystals Theory, Simulation, and Experiment. Chichester, UK: Wiley; (2015).
  32. M. A. Aliev, E.A. Ugolkova and N.Y. Kuzminyh, The Journal of Chemical Physics 145, 084908 (2016). https://doi.org/10.1063/1.4961662
  33. S.F. Edwards. Proceedings of the Physical Society 88, 265 (1966). https://dx.doi.org/10.1088/0370-1328/88/2/301
  34. E.F. Gramsbergen, L. Longa and W.H. de Jeu, Physics Reports 135, 195 (1986). https://www.sciencedirect.com/science/article/pii/ 0370157386900074
  35. L.D. Landau, E.M. Lifshitz. Statistical Physics: 2nd ed. Pergamon, Oxford. 1969.
  36. J.R. Dorgan. Liquid Crystals 10, 347 (1991). https://doi.org/10.1080/02678299108026281
  37. C.C. Riccardi, J. Borrajo and R.J.J. Williams, The Journal of Chemical Physics 108, 2571 (1998). https://doi.org/10.1063/1.475641

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Model of a V-shaped molecule formed by two rigid segments connected at an external angle α. The molecule consists of monomer units (designated as 1, 2… NA), the total number of which is equal to NA.

Download (18KB)
3. Fig. 2. Phase diagrams of a polymer/V-shaped LC mixture at φ = 1/2 and different external angles between the LC segments: a – a = 0, b – a = 0.524 rad, c – a = 0.611 rad, d – a = 0.6106. Binodals are shown as solid lines, liquid–liquid spinodal – as a dotted line, liquid–nematic phase spinodal – as a dashed-dotted line. The letters C, E, and P denote, respectively, the critical point, the eutectic point, and the point corresponding to the smallest value X of the mixture composition at which the single-phase nematic state N is realized.

Download (92KB)
4. Fig. 3. a – Phase diagram for a mixture of symmetric V-shaped molecules at a = 1.32 rad, NA = 4, NB = 10; b – behavior of eigenvalues ​​of tensor (2) depending on temperature. The solid line corresponds to the smallest ES, different from the other two coinciding ES (shown by the dotted line).

Download (39KB)
5. Fig. 4. Phase diagrams of a polymer/V-shaped LC mixture at a fixed value of the angle between the segments (a = p/6) for different degrees of asymmetry φ of the liquid crystal: (a) φ = 0, (b) φ = 1/6, (c) φ = 1/3 and (d) φ = 1/2. The notations are the same as in Fig. 2.

Download (92KB)

Copyright (c) 2024 Russian Academy of Sciences