Impact of regiodefects on polarization of ferroelectric polymers at low temperatures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A model is proposed to study the effect of regiodefects on the behavior of ferroelectric polymers in an electric field at low temperatures. Within the framework of the model, it is shown that there is a smooth reorientation of the dipole moments of monomers near the refiodefects, which is in agreement with the data obtained in molecular dynamics (MD) calculations. An analytical expression is obtained for the dependence of the average polarization on temperature, electric field, and concentration of regiodefects. Comparison with MD calculations allows us to estimate the bond stiffness of neighboring monomers and the induced electric field. The quantum version of the proposed model is investigated. It is shown that the ground state is singlet, and excitations can be either gapful or gapless, depending on the parity of the number of monomers between defects. There is a plateau on the zero-temperature magnetization curve.

Full Text

Restricted Access

About the authors

V. V. Atrazhev

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: krivnov@deom.chph.ras.ru
Russian Federation, Moscow

D. V. Dmitriev

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: krivnov@deom.chph.ras.ru
Russian Federation, Moscow

V. Ya. Krivnov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: krivnov@deom.chph.ras.ru
Russian Federation, Moscow

V. I. Sultanov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: krivnov@deom.chph.ras.ru
Russian Federation, Moscow

References

  1. S. Tasaka, K. Miyasato, M. Yoshikawa, et al., Ferroelectrics, 57, 267 (1984). https://doi.org/10.1080/00150198408012768
  2. S. Tasaka, K. Ohishi, N. Inagaki, Ferroelectrics, 171, 203 (1995). https://doi.org/10.1080/00150199508018432
  3. A. Wedel, H. von Berlepsch, R. Danz, Ferroelectrics, 120, 253 (1991). https://doi.org/10.1080/00150199108008249
  4. J.-H. Bae, S.-H. Chang, Funct. Compos. Struct., 1, 012003 (2019). https://doi.org/10.1088/2631-6331/ab0f48
  5. A.O. Vorobyev, D.E. Kulbakin, S.G. Chistyakov, et al., Russ. J. Phys. Chem. B 17, 1316 (2023). https://doi.org/10.1134/S1990793123060106
  6. L.N. Ignatieva, V.A. Mashchenko, O.M. Gorbenko, et al., Russ. J. Phys. Chem. B 17, 1330 (2023). https://doi.org/10.1134/S1990793123060039
  7. V.V. Kochervinskii, O.V. Gradov, M.A. Gradova Russ. Chem. Rev. 91, RCR5037 (2022). https://doi.org/10.57634/RCR5037
  8. S.G. Lu, B. Rozic, Z. Kutnjiak, et al., Integr. Ferroelectr. 125, 176 (2011). https://doi.org/10.1080/10584587.2011.574491
  9. B. Neese, B. Chu, S.-G. Lu, et al., Science 321, 821, (2008). https://doi.org/10.1126/science.1159655
  10. V. Basso, F. Russo, J.-F. Gerard, et al., Appl. Phys. Lett. 103, 202904 (2013). https://doi.org/10.1063/1.4830369
  11. V.I. Sultanov, V.V. Atrazhev, D.V. Dmitriev, et al. Macromolecules 54, 3744 (2021). https://doi.org/10.1021/acs.macromol.0c02465
  12. V.I. Sultanov, V.V. Atrazhev, D.V. Dmitriev, J. Polym. Sci. 61, 2091 (2023). https://doi.org/10.1002/pol.20230153
  13. N. Anousheh, F. Godey, A. Soldera J. Polym. Sci. Part A Polym. Chem. 55, 419 (2017). https://doi.org/10.1002/pola.28407
  14. V. I. Sultanov, V. V. Atrazhev, D. V. Dmitriev, J. Phys. Chem. B 128, 6376 (2024). https://doi.org/10.1021/acs.jpcb.4c00826
  15. V. N. Likhachev, G. A. Vinogradov and N. S. Erikhman, Russ. J. Phys. Chem. B 14, 391 (2020). https://doi.org/10.1134/S1990793120030203
  16. M. Takahashi, H. Nakamura, S. Sachdev Phys. Rev. B 54, R744 (1996). https://doi.org/10.1103/PhysRevB.54.R744
  17. J.F. Marko, E.D. Siggia, Macromolecules 28, 8759 (1995). https://doi.org/10.1021/ma00130a008
  18. V.Ya. Krivnov and D.V. Dmitriev, Russ. J. Phys. Chem. B 15, 89 (2021). https://doi.org/10.1134/S199079312101022X
  19. F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983). https://doi.org/10.1103/PhysRevLett.50.1153
  20. W. Chen, K. Hida, B. C. Sanctuary, J. Phys. Jpn. 69, 3414 (2000). https://doi.org/10.1143/JPSJ.69.3414
  21. N.M. Livanova, E.S. Pravada, L.A. Kovaleva, A.A. Popov, Russ. J. Phys. Chem. B 17, 738 (2023). https://doi.org/10.1134/S1990793123030077

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Regiodefects in the PVDF chain. Color coding of elements: carbon - gray, hydrogen - white, fluorine - turquoise.

Download (65KB)
3. Fig. 2. Profiles of local installation angles along a polymer chain containing one regiodefect: a – kink-like profile without dihedral angles in the gauche conformation; the red line shows the analytical one-soliton solution of the sine-Gordon equation, b – typical profile with three dihedral angles in the gauche conformation near the regiodefect.

Download (54KB)
4. Fig. 3. Schematic drawing of the orientation of PVDF chain monomers near one regional defect (a) and in the chain section between two regional defects (b).

Download (48KB)
5. Fig. 4. Schematic drawing of the magnetization curve (related to the saturation magnetization msat = 1/2) of the quantum model of ferromagnetic spin domains with antiferromagnetic interactions at the domain boundary (black curve). For comparison, the curve of the average normalized polarization of the classical model (red curve) given by equation (14) is shown.

Download (10KB)

Copyright (c) 2024 Russian Academy of Sciences