Impact of regiodefects on polarization of ferroelectric polymers at low temperatures
- Authors: Atrazhev V.V.1, Dmitriev D.V.1, Krivnov V.Y.1, Sultanov V.I.1
-
Affiliations:
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- Issue: Vol 43, No 11 (2024)
- Pages: 31-38
- Section: Электрические и магнитные свойства материалов
- URL: https://vestnikugrasu.org/0207-401X/article/view/680975
- DOI: https://doi.org/10.31857/S0207401X24110041
- ID: 680975
Cite item
Abstract
A model is proposed to study the effect of regiodefects on the behavior of ferroelectric polymers in an electric field at low temperatures. Within the framework of the model, it is shown that there is a smooth reorientation of the dipole moments of monomers near the refiodefects, which is in agreement with the data obtained in molecular dynamics (MD) calculations. An analytical expression is obtained for the dependence of the average polarization on temperature, electric field, and concentration of regiodefects. Comparison with MD calculations allows us to estimate the bond stiffness of neighboring monomers and the induced electric field. The quantum version of the proposed model is investigated. It is shown that the ground state is singlet, and excitations can be either gapful or gapless, depending on the parity of the number of monomers between defects. There is a plateau on the zero-temperature magnetization curve.
Full Text

About the authors
V. V. Atrazhev
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: krivnov@deom.chph.ras.ru
Russian Federation, Moscow
D. V. Dmitriev
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: krivnov@deom.chph.ras.ru
Russian Federation, Moscow
V. Ya. Krivnov
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Author for correspondence.
Email: krivnov@deom.chph.ras.ru
Russian Federation, Moscow
V. I. Sultanov
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: krivnov@deom.chph.ras.ru
Russian Federation, Moscow
References
- S. Tasaka, K. Miyasato, M. Yoshikawa, et al., Ferroelectrics, 57, 267 (1984). https://doi.org/10.1080/00150198408012768
- S. Tasaka, K. Ohishi, N. Inagaki, Ferroelectrics, 171, 203 (1995). https://doi.org/10.1080/00150199508018432
- A. Wedel, H. von Berlepsch, R. Danz, Ferroelectrics, 120, 253 (1991). https://doi.org/10.1080/00150199108008249
- J.-H. Bae, S.-H. Chang, Funct. Compos. Struct., 1, 012003 (2019). https://doi.org/10.1088/2631-6331/ab0f48
- A.O. Vorobyev, D.E. Kulbakin, S.G. Chistyakov, et al., Russ. J. Phys. Chem. B 17, 1316 (2023). https://doi.org/10.1134/S1990793123060106
- L.N. Ignatieva, V.A. Mashchenko, O.M. Gorbenko, et al., Russ. J. Phys. Chem. B 17, 1330 (2023). https://doi.org/10.1134/S1990793123060039
- V.V. Kochervinskii, O.V. Gradov, M.A. Gradova Russ. Chem. Rev. 91, RCR5037 (2022). https://doi.org/10.57634/RCR5037
- S.G. Lu, B. Rozic, Z. Kutnjiak, et al., Integr. Ferroelectr. 125, 176 (2011). https://doi.org/10.1080/10584587.2011.574491
- B. Neese, B. Chu, S.-G. Lu, et al., Science 321, 821, (2008). https://doi.org/10.1126/science.1159655
- V. Basso, F. Russo, J.-F. Gerard, et al., Appl. Phys. Lett. 103, 202904 (2013). https://doi.org/10.1063/1.4830369
- V.I. Sultanov, V.V. Atrazhev, D.V. Dmitriev, et al. Macromolecules 54, 3744 (2021). https://doi.org/10.1021/acs.macromol.0c02465
- V.I. Sultanov, V.V. Atrazhev, D.V. Dmitriev, J. Polym. Sci. 61, 2091 (2023). https://doi.org/10.1002/pol.20230153
- N. Anousheh, F. Godey, A. Soldera J. Polym. Sci. Part A Polym. Chem. 55, 419 (2017). https://doi.org/10.1002/pola.28407
- V. I. Sultanov, V. V. Atrazhev, D. V. Dmitriev, J. Phys. Chem. B 128, 6376 (2024). https://doi.org/10.1021/acs.jpcb.4c00826
- V. N. Likhachev, G. A. Vinogradov and N. S. Erikhman, Russ. J. Phys. Chem. B 14, 391 (2020). https://doi.org/10.1134/S1990793120030203
- M. Takahashi, H. Nakamura, S. Sachdev Phys. Rev. B 54, R744 (1996). https://doi.org/10.1103/PhysRevB.54.R744
- J.F. Marko, E.D. Siggia, Macromolecules 28, 8759 (1995). https://doi.org/10.1021/ma00130a008
- V.Ya. Krivnov and D.V. Dmitriev, Russ. J. Phys. Chem. B 15, 89 (2021). https://doi.org/10.1134/S199079312101022X
- F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983). https://doi.org/10.1103/PhysRevLett.50.1153
- W. Chen, K. Hida, B. C. Sanctuary, J. Phys. Jpn. 69, 3414 (2000). https://doi.org/10.1143/JPSJ.69.3414
- N.M. Livanova, E.S. Pravada, L.A. Kovaleva, A.A. Popov, Russ. J. Phys. Chem. B 17, 738 (2023). https://doi.org/10.1134/S1990793123030077
Supplementary files
