Adhesion of mold spores to polymer materials during their deposition in the air

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The features of the adhesive interaction of spores of various types of mold fungi deposited in a stationary air environment with polymeric materials are investigated. It is shown that regardless of the type of material, its angle of inclination and the type of fungus, all spores that have reached the polymer surface remain on it. The location of the sample relative to the source of spore propagation and the mechanism of their supply to the surface determine the number of spores retained on the material, characterizing the microbiological component of the air environment (the content and specific consumption of fungal spores in it). An algorithm for estimating this characteristic is proposed. It is advisable to take the research results into account when developing methods for testing the resistance of polymer materials to infection and damage by biodegradable fungi.

Full Text

Restricted Access

About the authors

I. G. Kalinina

Federal state budgetary institution of science Federal research center of chemical physics N. N. Semenova Russian Academy of Sciences (FIC CHF N.N. Semenov RAS)

Author for correspondence.
Email: i_kalinina1950@mail.ru
Russian Federation, Moscow

V. B. Ivanov

Federal state budgetary institution of science Federal research center of chemical physics N. N. Semenova Russian Academy of Sciences (FIC CHF N.N. Semenov RAS)

Email: i_kalinina1950@mail.ru
Russian Federation, Moscow

S. A. Semenov

Federal state budgetary institution of science Federal research center of chemical physics N. N. Semenova Russian Academy of Sciences (FIC CHF N.N. Semenov RAS)

Email: i_kalinina1950@mail.ru
Russian Federation, Moscow

V. V. Kazarin

Federal state budgetary institution of science Federal research center of chemical physics N. N. Semenova Russian Academy of Sciences (FIC CHF N.N. Semenov RAS)

Email: i_kalinina1950@mail.ru
Russian Federation, Moscow

O. A. Zhdanova

Federal state budgetary institution of science Federal research center of chemical physics N. N. Semenova Russian Academy of Sciences (FIC CHF N.N. Semenov RAS)

Email: i_kalinina1950@mail.ru
Russian Federation, Moscow

References

  1. B.K.H. Lim, and E.S. Thian, Sci. Total Environ. 20, 813 (2022). http://doi.org/10.16|j.scitotenv.2021.151880
  2. I.G. Kalinina, G.P. Belov, K.Z. Gumargalieva, and Yu.S. Petronyuk, Russ. J. Phys. Chem. B, 5, 139 (2011). http://doi.org/10.1134/S1990793111020047
  3. B.C. Daglen, and D.R. Tyler, Green Chem Lett. Rev. 3. 69 (2010). https://doi.org/10.1080/17518250903506723
  4. W. Abdelmoez, I. Dahab, E.M. Ragab, O.A. Abbdelsalam, O.A. Mustafa, and A. Mustafa, Polym. Adv. Technol. 32, 1981 (2021). https://doi.org/10.1002/pat.5253
  5. I.G. Kalinina, S.A. Semenov, and V.B. Ivanov, Ros. Khim. Zh. 68, 9 (2024). http://doi.org/10.60601RCI. 202024681.2
  6. T.A. Camesano, Y. Liu, and M. Datta, Adv. Water Res.. 30. 1470. (2007). http://doi.org/10.1016/j.advwatres.2006.05.023
  7. R. Burgers, S. Hahnel, T. E. Reichert, M. Rosentritt, M. Behr, T. Gerlach, G. Handel, and M. Gosau, Acta Biomater. 6, 2307 (2010). http://dx.doi.org110.1016/jactbio.2009.11.003
  8. V.K. Vivi, S.M. Martins-Franchetti, and D. Attili-Angelis, Folia Microbiol. 64, 1 (2019). http://doi.org/10.1007/s12223-018-0621-4
  9. B.-E. Priegnitz, A. Wargenau, U. Brandt, M. Rohde, S. Dietrich, A. Kwade, R. Krull, and A. Fleissner, Fungal Gen. Biol. 49, 30 (2012). http://doi.org/10.1016/j.fgb.2011.12.002
  10. Y. Shen, M. Nakajima, M.R. Ahmad, S. Kojima, M. Hommac, T. Fukuda, Ultramicroscopy. 111. 1176 (2011). http://doi.org/10.1016/j.ultramic.2011.02.008
  11. I.G. Kalinina, K.Z. Gumargalieva, V.V. Kazarin, and S.A. Semenov, Russ. J. Phys. Chem. B 11, 304 (2017). http://doi.org/10.1134/S19907931170200463
  12. I.G. Kalinina, K.Z. Gumargalieva, S.A. Semenov, and V.V. Kazarin, Russ. J. Phys. Chem. B 12, 135 (2018). https://doi.org/10.1134/S1990793118010189
  13. I.G. Kalinina, V.B. Ivanov, S.A.Semenov, V.V. Kazarin, and O.A. Zhdanova, Russ. J. Phys. Chem. B 15, 506 (2021). https://doi.org/10.1134/S1990793121030210
  14. K.A. Whitehead, T. Deisenroth, A. Preuss, and Ch.M. Liauw, J. Verran, Coll. Surf. B: Biointerfaces. 82, 483 (2011). https://doi.org/10.1016/j.colsurfb.2010.10.001
  15. I.G. Kalinina, V.B Ivanov, S.A. Semenov, V.V. Kazarin, and O.A. Zhdanova, Russ. J. Phys. Chem. B 17, 78 (2023). https://doi.org/10.31857/S0207401X23020085
  16. I.G. Kalinina, V.B Ivanov, S.A. Semenov, V.V. Kazarin, and O.A. Zhdanova, Russ. J. Phys. Chem. B 14, 1014 (2020). https://doi.org/10.1134 /S1990793120060068
  17. I.G. Kalinina, and K.Z. Gumargalieva, Prot. Metals Phys. Chem. Surf. 50, 910 (2014). https://doi.org/10.1134/S2070205114070089
  18. X. Li, T. Zhang, and S. Wang, Indoor Air. 28, 744 (2018). https://doi.org/10.1111/ina.12486
  19. A. Wargenau, and A. Kwade, Langmuir. 26, 11071 (2010). https://doi.org/10.1021/la100653c
  20. C.L.C. Tan, S. Gao, B.S. Wee, A. Asa-Awuku, and B.J.R. Thio. Aerosol Sci. Technol.. 48, 541 (2014). https://doi.org/10.1080/02786826.2014.898835
  21. E. Levetin and K. Dorsey, Aerobiologia, 22, 3 (2006). https://doi.org/10.1007/s10453-005-9012-9
  22. I.G. Kalinina, V.B. Ivanov, S.A. Semenov, V.V. Kazarin, and O.A. Zhdanova. Russ. J. Phys. Chem. B 123 (2022). https://doi.org/10.1134/S1990793122010213
  23. GOST 9.048-89. ESZKS. Technical products. Methods of laboratory tests for resistance to mold fungi. http://www.gostexpert.ru/gost/gost-9.048-89/
  24. GOST 9.049-91. Materials polymeric and their components. Methods of laboratory tests for resistance to mold fungi. http://www.gostexpert.ru/gost/gost-9.049-91/

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependences of the number of adhered spores (a, spores/cm2) and the number of adhesion (γ) of microscopic fungi Aspergillus niger, Penicillium chrisogenum, and Aspergillus terreus on various polymer materials: polyethylene, cellophane ,,,,), varnish fabric ( , , ) from the specific spore consumption (p, spores/cm2) at the angle of inclination of the samples to the direction of spore deposition (α = 20° (a) and 60° (b).

Download (55KB)

Copyright (c) 2024 Russian Academy of Sciences