Interaction of sodium atoms with molecular nitrogen in the upper atmosphere of the earth

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In recent years numerous satellite data on the yellow glow of the sodium layer (located at an altitude of 85–95 km from the Earth’s surface) have become available. Studies of optical activity at sodium D-line frequencies are necessary for a better understanding of the plasma-chemical processes occurring in the mesosphere. It should be taken into account that these processes occur in a neutral environment, where the molecular nitrogen is general component. In this work the analytical numerical expressions for the elements of 3´3 matrix of interaction between Na(2Pj) and N2(X 1Sg+) and interaction potential between Na(2S1/2) and N2(X 1Sg+) were obtained at medium and large interpartical distances that determine radiation lines collisional broadening. The exchange, quadrupole–quadrupole, dispersion, and spin–orbit interactions were taken into account. Exchange interaction between the valence Na electron and N2(X 1Sg+) molecule was described by the local Hellman pseudopotential. The effect of the overlap between Na(2S1/2, 2Pj) and N2(X 1Sg+) electron densities was taken into account evaluating long-range quadrupole–quadrupole and dispersion interactions.

全文:

受限制的访问

作者简介

S. Umanskii

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: golubkov@chph.ras.ru
俄罗斯联邦, Moscow

S. Adamson

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: golubkov@chph.ras.ru
俄罗斯联邦, Moscow

A. Vetchinkin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: golubkov@chph.ras.ru
俄罗斯联邦, Moscow

G. Golubkov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; National Research Center “Kurchatov Institute”

Email: golubkov@chph.ras.ru
俄罗斯联邦, Moscow; Moscow

M. Deminskii

Kintech Lab

Email: golubkov@chph.ras.ru
俄罗斯联邦, Moscow

O. Olkhov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: golubkov@chph.ras.ru
俄罗斯联邦, Moscow

I. Stepanov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: golubkov@chph.ras.ru
俄罗斯联邦, Moscow

Y. Chaikina

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: golubkov@chph.ras.ru
俄罗斯联邦, Moscow

A. Shushin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: golubkov@chph.ras.ru
俄罗斯联邦, Moscow

M. Golubkov

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

编辑信件的主要联系方式.
Email: golubkov@chph.ras.ru
俄罗斯联邦, Москва

参考

  1. M.G. Golubkov, A.V. Dmitriev, A.V. Suvorova, and G.V. Golubkov, Russ. J. Phys. Chem. B 16, 537 (2022). https://doi.org/10.1134/S199079312203006X
  2. V.L. Frolov, Y.Y. Kulikov, and A.V. Troitsky, Russ. J. Phys. Chem. B 16, 965 (2022). https://doi.org/10.1134/S1990793122050190
  3. G.V. Golubkov, S.O. Adamson, O.P. Borchevkina, et al., Russ. J. Phys. Chem. B 16, 508 (2022). https://doi.org/10.1134/S1990793122030058
  4. N.V. Bakhmetieva and I.N. Zhemyakov, Russ. J. Phys. Chem. B 16, 990 (2022). https://doi.org/10.1134/S1990793122050177
  5. B.R. Clemesha, Adv. Sp. Res. 10, 59 (1990). https://doi.org/10.1016/0273-1177(90)90010-W
  6. B.R. Clemesha, P.P. Batista, D. M. Simonich, and I.S. Batista, J. Geophys. Res. Atmos 109, D11306 (2004). https://doi.org/10.1029/2003JD004496
  7. D.R. Marsh, D. Janches, W. Feng, and J. M. C. Plane, J. Geophys. Res. Atmos. 118, 11442 (2013). https://doi.org/10.1002/jgrd.50870
  8. J.M.C. Plane, W. Feng, and E. C. M. Dawkins, Chem. Rev. 115, 4497 (2015). https://doi.org/10.1021/cr500501m
  9. M.P. Langowski, C. von Savigny, J. P. Burrows, et al., Atmos. Meas. Tech. 9, 295 (2016). https://doi.org/10.5194/amt-9-295-2016
  10. Y.B. Kumar, P.V. Prasanth, D.N. Rao, et al., Earth, Planets Sp. 59, 601 (2007); https://doi.org/10.1186/BF03352722
  11. C.S. Gardner and A.Z. Liu, J. Geophys. Res. Atmos. 115, D20302 (2010). https://doi.org/10.1029/2010JD014140
  12. N. Moussaoui, B.R. Clemesha, R. Holzlöhner, et al., Astron. Astrophys. 511, A31 (2010). https://doi.org/10.1051/0004-6361/200913281
  13. Y. Xun, G. Yang, J. Wang, et al., Atmosphere 11, 284 (2020); https://doi.org/10.3390/atmos11030284
  14. X. Cheng, G. Yang, T. Yuan, et al., Remote Sens. 12, 3678 (2020). https://doi.org/10.3390/rs12223678
  15. B.R. Clemesha, M.P.P. Martins Jorge, D. M. Simonich, and P.P. Batista, Adv. Sp. Res. 19, 681 (1997). https://doi.org/10.1016/S0273-1177(97)00163-4
  16. N. Allard and J. Kielkopf, Rev. Mod. Phys. 54, 1103 (1982). https://doi.org/10.1103/RevModPhys.54.1103
  17. A.V. Demura, S.Y. Umanskii, A.V. Scherbinin, and A.V. Zaitsevskii, J. Phys. Conf. Ser. 397, 012033 (2012). https://doi.org/10.1088/1742-6596/397/1/012033
  18. S.Y. Umanskii, S. O. Adamson, A. S. Vetchinkin, et al., Russ. J. Phys. Chem. B 17, 346 (2023). https://doi.org/10.1134/S199079312302032X
  19. C. Bottcher, Chem. Phys. Lett. 35, 367 (1975). https://doi.org/10.1016/0009-2614(75)85621-1
  20. P. Habitz, Chem. Phys. 54, 131 (1980). https://doi.org/10.1016/0301-0104(80)80043-7
  21. P. Archirel and P. Habitz, Chem. Phys. 78, 213 (1983). https://doi.org/10.1016/0301-0104(83)85108-8
  22. D. Poppe, D. Papierowska-Kaminski, and V. Bonačić-Koutecký, J. Chem. Phys. 86, 822 (1987). https://doi.org/10.1063/1.452761
  23. R. Goldstein, J. Grosser, O. Hoffmann, et al., J. Chem. Phys. 114, 2144 (2001). https://doi.org/10.1063/1.1337060
  24. M. Jungen, Helv. Chim. Acta 84, 1459 (2001). https://doi.org/10.1002/1522-2675(20010613)84: 6<1459::AID-HLCA1459>3.0.CO;2-J
  25. C. Figl, R. Goldstein, J. Grosser, O. Hoffmann, and F. Rebentrost, J. Chem. Phys. 121, 11068 (2004). https://doi.org/10.1063/1.1818121
  26. F. Rebentrost, C. Figl, R. Goldstein, et al., J. Chem. Phys. 128, 1 (2008). https://doi.org/10.1063/1.2928716
  27. E. Nikitin and S. Y. Umanskii, Theory of slow atomic collisions (Springer, Heidelberg, 1984). https://doi.org/10.1007/978-3-642-82045-8
  28. E. E. Nikitin and S. Y. Umanskii, Theor. Chim. Acta. 28, 121 (1973). https://doi.org/10.1007/BF00528656
  29. A. I. Reznikov and S. Y. Umanskii, Russ. J. Phys. Chem. 76, S13 (2002).
  30. A. I. Reznikov, S. Y. Umanskii, and Y. A. Chaikina, Russ. J. Phys. Chem. B 1, 435 (2007). https://doi.org/10.1134/S1990793107050016
  31. V. M. Galitsky, E. E. Nikitin, and B. M. Smirnov, Theory of atomic particles collisions (Nauka, Moscow, 1981).
  32. H. Hellmann, J. Chem. Phys. 3, 61 (1935). https://doi.org/10.1063/1.1749559
  33. H. Hellmann, Quantum chemistry (State Publication of technical and Theoretical literature, Moscow, Leningrad, 1937).
  34. P. Gombash, Many-particle problem in quantum mechanics (Inostrannaya Literatura, Moscow, 1952).
  35. W.E. Baylis, J. Chem. Phys. 51, 2665 (1969). https://doi.org/10.1063/1.1672393
  36. J. Pascale and J. Vandeplanque, J. Chem. Phys. 60, 2278 (1974). https://doi.org/10.1063/1.1681360
  37. K.J. Wahlstrand , R.W. Numrich, J.S. Dahler, and S.E. Nielsen, J. Phys. B At. Mol. Phys. 10, 1687 (1977). https://doi.org/10.1088/0022-3700/10/9/019
  38. E. Czuchaj and J. Sienkiewicz, Z. Naturforsch. A 34, 694 (1979). https://doi.org/10.1515/zna-1979-0604
  39. R. Düren and G. Moritz, J. Chem. Phys. 73, 5155 (1980). https://doi.org/10.1063/1.439994
  40. S.V. Khristenko, A.I. Maslov, and V. P. Shevelko, Molecules and Their Spectroscopic Properties (Springer Berlin Heidelberg, Berlin, Heidelberg, 1998). https://doi.org/10.1007/978-3-642-71946-2
  41. D. Rapp and C.M. Chang, J. Chem. Phys. 57, 4283 (1972). https://doi.org/10.1063/1.1678060
  42. D. Rapp and C.M. Chang, J. Chem. Phys. 58, 2657 (1973). https://doi.org/10.1063/1.1679551
  43. P.G. Burke and N. Chandra, J. Phys. B At. Mol. Phys. 5, 1696 (1972). https://doi.org/10.1088/0022-3700/5/9/013
  44. L.R. Kahn, P. Baybutt, and D.G. Truhlar, J. Chem. Phys. 65, 3826 (1976). https://doi.org/10.1063/1.432900
  45. E. Czuchaj, J. Sienkiewicz, and W. Miklaszewski, Chem. Phys. 116, 69 (1987). https://doi.org/10.1016/0301-0104(87)80069-1
  46. J.R. Trail and R.J. Needs, J. Chem. Phys. 146, 204107 (2017). https://doi.org/10.1063/1.4984046
  47. S.O. Adamson, D.D. Kharlampidi, G. V. Golubkov, et al., Russ. J. Phys. Chem. B 14, 235 (2020). https://doi.org/10.1134/S1990793120020165
  48. S.O. Adamson, D.D. Kharlampidi, G.V. Golubkov, et al., Russ. J. Phys. Chem. B 14, 742 (2020). https://doi.org/10.1134/S1990793120050164
  49. L.D. Landau, E.M. Lifshitz, Quantum mechanics (Pergamon Press, Oxford, New York, Frankfurt, 1977).
  50. D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii, Quantum theory of angular momentum (Nauka, Leningrad, 1975).
  51. G. Maroulis, J. Chem. Phys. 118, 2673 (2003). https://doi.org/10.1063/1.1535443
  52. J. Kobus, Phys. Rev. A 91, 022501 (2015). https://doi.org/10.1103/PhysRevA.91.022501
  53. B. J. Ransil, Rev. Mod. Phys. 32, 245 (1960). https://doi.org/10.1103/RevModPhys.32.245
  54. I. I. Sobelman, Introduction to the theory of atomic spectra (Pergamon press, Oxford, 1972). https://doi.org/10.1016/C2013-0-02394-8
  55. B.C. Carlson and G.S. Rushbrooke, Math. Proc. Camb. Philos. Soc. 46, 626 (1950). https://doi.org/10.1017/S0305004100026190
  56. C.G. Gray, Can. J. Phys. 46, 135 (1968). https://doi.org/10.1139/p68-020
  57. K.T. Tang and J.P. Toennies, J. Chem. Phys. 68, 5501 (1978). https://doi.org/10.1063/1.435678
  58. K.T. Tang and J.P. Toennies, J. Chem. Phys. 80, 3726 (1984). https://doi.org/10.1063/1.447150
  59. G.D. Mahan, J. Chem. Phys. 48, 950 (1968). https://doi.org/10.1063/1.1668749
  60. G.D. Mahan, J. Chem. Phys. 50, 2755 (1969). https://doi.org/10.1063/1.1671441
  61. B. Amaee and C. Bottcher, J. Phys. B At. Mol. Phys. 11, 1249 (1978). https://doi.org/10.1088/0022-3700/11/7/022
  62. A.I. Reznikov and S.Y. Umanskii, Khim. Fiz. 23, 5 (2004).
  63. D.E. Weeks, T.A. Niday, and S.H. Yang, J. Chem. Phys. 125, 1 (2006). https://doi.org/10.1063/1.2222369
  64. F. Rebentrost and W.A. Lester, J. Chem. Phys. 64, 3879 (1976). https://doi.org/10.1063/1.432705
  65. M.H. Alexander and M. Yang, J. Chem. Phys. 103, 7956 (1995). https://doi.org/10.1063/1.470213

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The coordinate systems K(xyz) and K1(x1y1z1) used in constructing the wave functions of the correct symmetry of the Na–N2 system corresponding to the LM set. Here R is the vector between the center of mass of the N2 molecule and the nucleus of the Na atom, r and r1 are the radius vectors of the valence electron of the Na atom in the coordinate systems K and K1, respectively; Q is the angle between the vector R and the direction of the axis of the N2 molecule.

下载 (25KB)
3. Fig. 2. Coordinate systems K0(x0y0z0), K1(x1y1z1) and K2(x2y2z2) used in calculating the matrix elements and . Here R is the vector between the center of mass of the N2 molecule and the nucleus of the Na atom; r0, r1 and r2 are the radius vectors of the valence electron of the Na atom in the coordinate systems K0, K1 and K2, respectively; Q is the angle between the vector R and the direction of the axis of the N2 molecule.

下载 (37KB)

版权所有 © Russian Academy of Sciences, 2024