Mechanism of nitrate formation in atmospheric haze particlesre

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper considers data on winter monitoring of the ionic composition of aerosol particles and small gas components in the surface atmosphere of Antwerp and Beijing. According to the results of their comparison, it is shown that the rapid accumulation of NO3- over Beijing in haze particles is triggered by a liquid-phase catalytic reaction of sulfate formation involving Mn/Fe ions, which proceeds in a fast degenerate branched mode. The cycle of these transformations is accompanied by the associated production of nitrate radicals in the particles. Their release into the gas phase leads to an increase in the concentration of N2O5 molecules, and a rapid accumulation of nitrates. The coupling of the catalytic (petrochemical) conversion of sulfur dioxide into sulfates and the nitrate production process over Beijing thus plays a crucial role in the formation of the mineral composition of haze particles in the atmosphere.

Full Text

Restricted Access

About the authors

G. B. Pronchev

Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences

Author for correspondence.
Email: pronchev@rambler.ru
Russian Federation, Moscow

A. N. Yermakov

Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences

Email: pronchev@rambler.ru
Russian Federation, Moscow

References

  1. M.O. Andreae, C.D. Jones, P.M. Cox, Nature. 435(7046), 1187 (2005). https://doi.org/10.1038/nature03671
  2. J.H. Seinfeld, S.N. Pandis, Atmospheric Chemistry and Physics, from Air Pollution to Climate Change (John Wiley & Sons, Hoboken, New Jersey, USA, 2016).
  3. V.V. Zelenov, E.V. Aparina, Russ. J. Phys. Chem. B 16(6), 1182 (2022). https://doi.org/10.1134/S1990793122060239
  4. V.V. Zelenov, E.V. Aparina, Russ. J. Phys. Chem. B 17(1), 234 (2023). https://doi.org/10.1134/S1990793123010141
  5. A.A. Eganov, D.A. Kardonsky, I.V. Sulimenkov, et al., Russ. J. Phys. Chem. B 17(2), 503 (2023). https://doi.org/10.1134/S1990793123020240
  6. I.K. Larin, G.B. Pronchev, A.N. Yermakov, Russ. J. Phys. Chem. B 18(3), 675 (2024).
  7. C.M. Clark, D. Tilman, Nature. 451(7179), 712 (2008). https://doi.org/10.1038/nature06503
  8. Q. Zhang, X. Jiang, D. Tong, et al., Nature. 543(7647), 705 (2017). https://doi.org/10.1038/nature21712
  9. G. H. Wang, R. Y. Zhang, M. E. Gomes, et al., Proc. Natl. Acad. Sci. U.S.A. 113(48), 13630 (2016). https://doi.org/10.5194/acp-23-3015-2023
  10. P. Liu, C. Ye, Ch. Xue, et al., Atmos. Chem. Phys. 20(7), 4153 (2020). https://doi.org/10.5194/acp-20-4153-2020
  11. G. J. Zheng, F. K. Duan, H. Su, et al., Atmos. Chem. Phys. 15(6), 2969 (2015). https://doi.org/10.5194/acp-15-2969-2015
  12. Y. Pan, Y. Wang, J. Zhang, et al., Atmospheric Environment. 141, 197 (2016). https://doi.org/10.1016/j.atmosenv.2016.06.035
  13. M.-Y. Fan, Y.-L. Zhang, Y.-Ch. Lin, et al., Atmospheric Environment. 212, 96 (2019). https://doi.org/10.1016/j.atmosenv.2019.05.020
  14. H. Wang, K. Lu, X. Chen, et al., Environ. Sci. Technol. Lett. 4(10), 416(2017). https://doi.org/10.1021/acs.estlett.7b00341
  15. H. Wang, The chemistry of nitrate radical (NO3) and denitrogen pentoxide (N2O5) in Beijing. Springer Theses (Springer Nature Singapore Pte Ltd., 2021).
  16. Y. Sun, Q. Jiang,Z. Wang, et al., J. Geophys. Res. 119(7), 4380 (2014). https://doi.org/10.1002/2014JD021641
  17. G.J. Zheng, F.K. Duan, H. Su, et al., Atmos. Chem. Phys. 15, 2969 (2015). https://doi.org/10.5194/acp-15-2969-2015
  18. S.P. Sander, R.R. Friedl, D.M. Golden, et al., Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Evaluation Number 15. JPL Publication 06-2(Jet Propulsion Laboratory. Pasadena. CA, 2006).
  19. A.N. Yermakov, A.E. Aloyan, V.O. Arutyunyan, G. B. Pronchev,Atmos Ocean Opt. 37, (2024). (in press)
  20. A.N. Yermakov, Kinet. Catal. 64(1), 74 (2023). https://doi.org/10.1134/S0023158423010019
  21. R.V. Grieken,Optimization and environmental application of TW-EPMA for single particle analysis (Antwerpen University, Antwerpen, 2005).
  22. M. Liu, Y. Song, T. Zhou, et al., Geophys. Res. Lett. 44(10), 5213 (2017). https://doi.org/10.1002/2017GL073210
  23. S. E. Schwartz, Gas–aqueous reactions of sulfur and nitrogen oxides in liquid-water clouds // SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations.Ed. by J. G. Calvert (Butterworth, Boston, 1984). p. 173.
  24. M. Z. Jacobsen, A. Tabazadeh, R. P. Turco, J. Geophys. Res. Atm. 101(D4), 9079 (1996). https://doi.org/10.1029/96JD00348
  25. T. Liu, S. L. Clegg, J. P. D. Abbatt, Proc. Natl. Acad. Sci. U.S.A. 117(3),1354 (2020). https://doi.org/10.1073/pnas.1916401117
  26. Y. Cheng, G. Zheng, C. Wei, et al., Sci. Adv. 2(12), e1601530 (2016). https://doi.org/10.1126/sciadv.1601530
  27. H. Herrmann, B. Ervens, H. - W. Jacobi, et al., J. Atmos. Chem. 36(3), 231 (2000). https://doi.org/10.1023/A:1006318622743
  28. M. D. Petters, S. M. Kreidenweis, Atmos. Chem. Phys. 7(8), 1961 (2007). https://doi.org/10.5194/acp-7-1961-2007
  29. C. Fountoukis, A. Nenes, Atmos. Chem. Phys. 7(17), 4639 (2007). https://doi.org/10.5194/acp-7-4639-2007

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the ratio of mass concentrations (μmol m-3) of nitrates and sulfates in aerosol particles over Antwerp (gray circles) and in haze particles over Beijing (light circles) on the relative air humidity. The inset shows the change in the ratio of nitrates and nitric acid vapors over Antwerp depending on the moisture content of the particles.

Download (42KB)
3. Fig. 2. Correspondence between calculated ([NO-3(aer)]calc) and measured ([NO-3(aer)]meas) nitrate concentrations (gray dots) in aerosol particles over Antwerp (19–21 December 2003) [21]. Light dots – [NO-3(aer)]meas calculations using the nitric acid vapour concentration averaged over all episodes. Solid line – data correspondence with a correlation coefficient equal to one.

Download (26KB)
4. Fig. 3. Dependence of mass concentrations of nitrates (main field of the figure) and sulfates (inset) in haze particles over Beijing on their moisture content.

Download (51KB)
5. Fig. 4. Effect of sulfate content on the volumetric moisture content of haze particles (Beijing, December 2016) – data from monitoring and thermodynamic calculations [22]. Black circles in open circles – sample of episodes with pH < 3.5, black triangles in open circles – sample with pH > 4.3 (see text).

Download (29KB)

Copyright (c) 2024 Russian Academy of Sciences