Magnetic nanoparticles as a platform for delivery of the photosensitizer methylene blue to HCT116 tumor cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hybrid nanosystems based on magnetic iron oxide nanoparticles (IONPs) and human serum albumin (HSA), containing methylene blue (MB) as a model photosensitizer, have been synthesized. The resulting HSA@IONP nanosystems were characterized for size and composition using UV/visible spectrophotometry (particularly, using the Bradford method), dynamic light scattering, and electron magnetic resonance. A study of the dark and photoinduced cytotoxicity of MB, IONP, HSA@IONP, MB–IONP, MB–(HSA@IONP) on of human colon adenocarcinoma HCT116 cells was carried out. Under the experimental conditions, the difference between the dark and light-induced cytotoxicity of nanosystems on cells was significantly enhanced when the photosensitizer was immobilized on the surface of the carrier particles compared to free photosensitizer in equivalent concentrations.

Full Text

Restricted Access

About the authors

M. T. Nguyen

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Russian Federation, Moscow

A. A. Markova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Russian Federation, Moscow

B. B. Batchaeva

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Russian Federation, Moscow

M. G. Gorobets

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Russian Federation, Moscow

A. V. Toroptseva

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Russian Federation, Moscow

M. V. Motyakin

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Russian Federation, Moscow

M. I. Abdullina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Russian Federation, Moscow

A. V. Bychkova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: anna.v.bychkova@gmail.com
Russian Federation, Moscow

References

  1. Q. Chen, Z. Liu. Adv. Mater. 28, 10557–10566 (2016). https://doi.org/10.1002/adma.201600038
  2. L.L. Israel, A. Galstyan, E. Holler et al. J. Control. Release. 320, 45 (2020). https://doi.org/10.1016/j.jconrel.2020.01.009
  3. A.S. Chubarov. Magnetochemistry 8, 13 (18 pages) (2022). https://doi.org/10.3390/magnetochemistry8020013
  4. N.G. Berdnikova, A.E. Dontsov, M.V. Erokhina et al. Russ. J. Phys. Chem. B. 13, 942 (2019). https://doi.org/10.1134/S1990793119060150
  5. N.V. Menshutina, A.A. Uvarova, M.S. Mochalova et al. Russ. J. Phys. Chem. B. 17, № 7, 1507 (2023). https://doi.org/10.1134/S1990793123070163
  6. M.A. Kolyvanova, M.A. Klimovich, O.V. Dement’eva et al. Russ. J. Phys. Chem. B. 17, 206 (2023). https://doi.org/10.1134/S1990793123010062
  7. A.V. Povolotskiy, D.A. Soldatova, D.A. Lukyanov et al. Russ. J. Phys. Chem. B 17, 1398 (2023). https://doi.org/10.1134/S1990793123060192
  8. J.P. Tardivo, A. Del Giglio, C.S. de Oliveira et al. Photodiagnosis Photodyn. Ther. 2, 175 (2005). https://doi.org/10.1016/S1572-1000(05)00097-9
  9. Y. Zhang, Z. Ye, R. He et al. Colloids Surfaces B Biointerfaces 224, 113201 (2023). https://doi.org/10.1016/j.colsurfb.2023.113201
  10. V.H. Toledo, T.M. Yoshimura, S.T. Pereira et al. J. Photochem. Photobiol. B Biol. 209, 111956 (2020). https://doi.org/10.1016/j.jphotobiol.2020.111956
  11. J.A. Rodrigues, J.H. Correia. Int. J. Mol. Sci. 24, 12204 (2023). https://doi.org/10.3390/ijms241512204
  12. I.D. Burtsev, A.E. Egorov, A.A. Kostyukov et al. Russ. J. Phys. Chem. B. 16, 109 (2022). https://doi.org/10.1134/S1990793122010195
  13. M.A. Klimovich, N.N Sazhina, A.S. Radchenko et al. Russ. J. Phys. Chem. B. 15, 93 (2021). https://doi.org/10.1134/S1990793121010206
  14. A.V. Bychkova, M.N. Yakunina, M.V. Lopukhova et al. Pharmaceutics. 14, 2771 (2022). https://doi.org/10.3390/pharmaceutics14122771
  15. M.T. Nguyen, E.V. Guseva, A.N. Ataeva et al. Int. J. Mol. Sci. 24, 7995 (2023). https://doi.org/10.3390/ijms24097995
  16. F.I. Dalidchik, O.A. Lopatina, S.A. Kovalevsky et al. Russ. J. Phys. Chem. B. 18, 266 (2024). https://doi.org/10.1134/S1990793124010238
  17. Y.-J.Hu, W. Li, Y. Liu et al. J. Pharm. Biomed. Anal. 39, 740 (2005). https://doi.org/10.1016/j.jpba.2005.04.009

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Survival of human colon adenocarcinoma HCT116 cells exposed to the studied samples in dark (a) and light (b) experiments. In the case of particles without MS (NCHO and HSA@NCHO), the cells were incubated with an amount of particles equivalent to particles with MS (MS–NCHO and MS–(HSA@NCHO), respectively). The names of the studied systems, their structures, and their designations present in the figures are given in the upper part of the figure.

Download (200KB)

Copyright (c) 2025 Russian Academy of Sciences