Kinetics of the Decay of Excited Singlet State into a Pair of T-Excitons in Rubrene Films: Mechanism and Manifestation of Exciton Migration

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The kinetics of the decay (splitting) of the excited singlet -state of rubrene molecules into a pair of
triplet-excitons (T-excitons) in rubrene films, usually represented in terms of the kinetics of the decay of fluorescence
(KDF) from the -state, is analyzed in detail. The KDF is known to be significantly controlled by
the process of diffusive migration and annihilation of the generated T-excitons. In the analysis, two migration
models are considered: the two-state model (TSM), treating the migration effect as a result of transitions
between the [TT] state of coupled T-excitons (at small TT-distances r) and the [T+T]-state of freely migrating
Е-excitons (at large distances r), as well as the free migration model (FMM), neglecting the effect of the [TT]
state. Within the TSM and FMM, the expressions for are derived, which are applied to describe the KDF ,
measured in amorphous rubrene films. Within the experimentally investigated range of times, , the TSM is
shown to reproduce the behavior of the experimental KDF much more accurately than the FMM. At longer
times a substantial difference () between and the FMM-predicted KDF is found, which is far beyond the
experimental error (3%).

About the authors

A. I. Shushin

Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: shushin@chph.ras.ru
Moscow, Russia

S. Ya. Umanskii

Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: shushin@chph.ras.ru
Moscow, Russia

Yu. A. Chaikina

Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: shushin@chph.ras.ru
Moscow, Russia

References

  1. Smith M.B., Michl J. // Annu. Rev. Phys. Chem. 2013. V. 64. P. 361; https://doi.org/10.1146/annurev-physchem-040412-110130
  2. Casanova D. // Chem. Rev. 2018. V. 118. P. 7164; https://doi.org/10.1021/acs.chemrev.7b00601
  3. Miyata K., Conrad-Burton F.S., Geyer F.L. et al. // Chem. Rev. 2019. V. 84. P. 4261; https://doi.org/10.1021/acs.chemrev.8b00572
  4. Merrifield R.E. // J. Chem. Phys. 1968. V. 48. P. 4318; https://doi.org/10.1063/1.1669777
  5. Suna A. // Phys. Rev. B. 1970. V. 1. P. 1716; https://doi.org/10.1103/PhysRevB.1.1716
  6. Konyaev S.N., Shushin A.I., Kolesnikova L.I. et al. // Phys. Stat. Sol. B. 1987. V. 142. P. 461.
  7. Tarasov V.V., Zoriniants G.E., Shushin A.I. et al. // Chem. Phys. Lett. 1997. V. 267. P. 58; https://doi.org/10.1016/S0009-2614(97)00056-0
  8. Ветчинкин А.С., Уманский С.Я., Чайкина Ю.А. и др. // Хим. физика. 2022. Т. 41. № 9. С. 72; https://doi.org/10.31857/S0207401X22090102
  9. Ryansnyanskiy A., Biaggio I. // Phys. Rev. B. 2011. V. 84. P. 193203; https://doi.org/10.1103/PhysRevB.84.193203
  10. Shushin A.I. // J. Chem. Phys. 2022. V. 156. P. 074703; https://doi.org/10.1063/5.0078158
  11. Piland G.B., Burdett J.J., Kurunthu D. et al. // J. Phys. Chem. C. 2013. V. 117. P. 1224; https://doi.org/10.1021/jp309286v
  12. Шушин А.И. // Хим. физика. 2017. Т. 36. № 11. С. 17; https://doi.org/10.7868/S0207401X17110085
  13. Pilland G.B., Burdett J.J., Dillon R.J. et al. // J. Phys. Chem. Lett. 2014. V. 5. P. 2312; https://doi.org/10.1021/jz500676c
  14. Shushin A.I. // Chem. Phys. Lett. 1985. V. 118. P. 197; https://doi.org/10.1016/0009-2614(85)85297-0
  15. Shushin A.I. // J. Chem. Phys. 1991. V. 95. P. 3657; https://doi.org/10.1063/1.460817
  16. Shushin A.I. // J. Chem. Phys. 1992. V. 97. P. 1954; https://doi.org/10.1063/1.463132
  17. Buchachenko A.L. // Rus. J. Phys. Chem. B. 2022. V. 16. P. 9; https://doi.org/10.1134/S1990793122010031
  18. Buchachenko A.L., Kuznetsov D.A. // Rus. J. Phys. Chem. B. 2021. V. 15. P. 1; https://doi.org/10.1134/S1990793121010024
  19. Лундин А.А., Зобов В.Е. // Хим. физика. 2021. Т. 40. № 9. С. 41; https://doi.org/10.31857/S0207401X21090077
  20. Shushin A.I. // Chem. Phys. Lett. 2017. V. 678. P. 283; https://doi.org/10.1016/j.cplett.2017.04.068

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (87KB)
3.

Download (54KB)

Copyright (c) 2023 А.И. Шушин, С.Я. Уманский, Ю.А. Чайкина