An Electrostatic Mechanism for the Formation of Hybrid Nanostructures Based on Gold Nanoparticles and Cationic Porphyrins

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

interaction of cationic porphyrin with gold nanoparticles (GNPs) coated with polymer shells
with positive and negative surface potentials in an aqueous solution is studied. The criteria for the formation
of hybrid molecular-plasmon nanostructures based on the determination of the luminescence quenching
mechanism according to the Stern-Volmer equation and the change in the shape of the porphyrin luminescence
spectrum are established. The effect of the sign of the zeta potential of GNPs on the formation of hybrid
molecular-plasmon nanostructures due to electrostatic interaction is established.

About the authors

A. V. Povolotskiy

Institute of Chemistry, St. Petersburg State University

Email: alexey.povolotskiy@spbu.ru
St. Petersburg, Russia

D. A. Soldatova

Institute of Chemistry, St. Petersburg State University

Email: alexey.povolotskiy@spbu.ru
St. Petersburg, Russia

D. A. Lukyanov

Institute of Chemistry, St. Petersburg State University

Email: alexey.povolotskiy@spbu.ru
St. Petersburg, Russia

E. V. Solovieva

Institute of Chemistry, St. Petersburg State University

Author for correspondence.
Email: alexey.povolotskiy@spbu.ru
St. Petersburg, Russia

References

  1. Lascu A., Birdeanu M., Taranu B., Fagadar-Cosma E. // J. Chem. 2018. V. 2018. P. 1; https://doi.org/10.1155/2018/5323561
  2. Kundu S., Patra A. // Chem. Rev. 2017. V. 117. P. 712; https://doi.org/10.1021/acs.chemrev.6b00036
  3. Yang J., Peng Y., Li S. et al. // Coord. Chem. Rev. 2022. V. 456. P. 214391; https://doi.org/10.1016/j.ccr.2021.214391
  4. Тертышная Ю.В., Лобанов А.В., Хватов А.В. // Хим. физика. 2020. Т. 39. № 11. С. 52; https://doi.org/10.31857/S0207401X20110138
  5. Yanagi R., Zhao T., Solanki D. et al. // ACS Energy Lett. 2022. V. 7. P. 432; https://doi.org/10.1021/acsenergylett.1c02516
  6. Zhang S., Geryak R., Geldmeier J. et al. // Chem. Rev. 2017. V. 117. P. 12942; https://doi.org/10.1021/acs.chemrev.7b00088
  7. Povolotskiy A., Evdokimova M., Konev A., Kolesnikov I., Povolotckaia A., Kalinichev A. // Springer Ser. Chem. Phys. 2019. V. 119. P. 173; https://doi.org/10.1007/978-3-030-05974-3_9
  8. Клименко И.В., Градова М.А., Градов О.В., Бибиков С.Б., Лобанов А.В. // Хим. физика. 2020. Т. 39. № 5. С. 43; https://doi.org/10.31857/S0207401X20050076
  9. Romera C., Sabater L., Garofalo A. et al. // Inorg. Chem. 2010. V. 49. P. 8558; https://doi.org/10.1021/ic101178n
  10. Schulz S., Ziganshyna S., Lippmann N. et al. // Microorganisms. 2022. V. 10. P. 858; https://doi.org/10.3390/microorganisms10050858
  11. Liu X., Atwater M., Wang J., Huo Q. // Colloids Surf., B. 2007. V. 58. P. 3; https://doi.org/10.1016/j.colsurfb.2006.08.005
  12. Ou Z., Yao H., Kimura K. // Chem. Lett. 2006. V. 35. P. 782; https://doi.org/10.1246/cl.2006.782

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (51KB)
3.

Download (222KB)
4.

Download (76KB)
5.

Download (111KB)

Copyright (c) 2023 А.В. Поволоцкий, Д.А. Солдатова, Д.А. Лукьянов, Е.В. Соловьёва