Influence of the Polymer Matrix Composition on the Size Range of Silver Nanoparticles Formed in a Succinyl Chitosan Solution Under the Action of Microwave Radiation
- Authors: Aleksandrova V.A.1, Futoryanskaya A.M.1
-
Affiliations:
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
- Issue: Vol 42, No 12 (2023)
- Pages: 66-69
- Section: Chemical physics of polymeric materials
- URL: https://vestnikugrasu.org/0207-401X/article/view/675011
- DOI: https://doi.org/10.31857/S0207401X23120038
- EDN: https://elibrary.ru/UWWHSK
- ID: 675011
Cite item
Abstract
A new composite based on succinyl chitosan (SCTZ) and silver nanoparticles (NPs) with the
inclusion of an additional component, polyethylene oxide (PEO), is developed. Microwave radiation and Dglucose
as a reducing agent are used to form silver NPs by reduction from metal ions. The presence of silver
NPs in the obtained colloidal solutions is judged by the appearance of absorption bands in the electron plasmon
resonance spectra ( max = 420 nm). It is shown that the introduction of an additional component in the
polymer matrix leads to a significant narrowing of the size range of the formed silver NPs.
About the authors
V. A. Aleksandrova
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: alexandrova@ips.ac.ru
Moscow, Russia
A. M. Futoryanskaya
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Author for correspondence.
Email: alexandrova@ips.ac.ru
Moscow, Russia
References
- Philippova O.T., Korchagina E.V. // Polym. Sci. A. 2012. V. 54. № 7. P. 552.
- Lan C., Niu G.C., Chang S.J., Yao C.H., Kuo S.M. // Biomed. Eng. Appl. Basis Commun. 2011. V. 23. № 1. P. 51.
- Grigorieva M.V. // Biotechnology. 2011. V. 4. № 2. P. 9.
- Шуршина А.С., Галина А.Р., Кулиш Е.И. // Хим. физика. 2022. Т. 41. № 4. С. 63; https://doi.org/10.31857/S0207401X22040082
- Помогайло А.Д., Джардималиева Г.И. Металлполимерные гибридные нанокомпозиты. М.: Наука, 2015.
- Захаров Н.С., Попова А.Н., Захаров Ю.А., Пугачёв В.М., Руссаков Д.М. // Хим. физика. 2022. Т. 41. № 7. С. 84; https://doi.org/10.31857/S0207401X22070172
- Александрова В.А., Футорянская А.М., Sadykova V.S. // Appl. Biochem. Microbiol. 2020. V. 56. № 5. P. 590; https://doi.org/10.1134/S0003683820050026
- Kiryukhin M.V., Sergeev B.M., Sergeyev V.G., Prusov A.N. // Polym. Sci. B. 2000. V. 42. № 5–6. P. 158.
- Коляда Л.Г., Ершова О.В., Ефимова Ю.Ю., Тарасюк Е.В. // Альм. совр. науки и образов. 2013. № 10. С. 79.
- Вишнякова Е.А., Сайкова С.В., Жарков С.М., Лихацкий М.Н., Михлин Ю.Л. // Журн. Сибирского федерального ун-та. Химия. 2009. Т. 2. № 1. С. 48.
- Александрова В.А., Футорянская А.М. // Хим. физика. 2021. Т. 40. № 12. С. 65; https://doi.org/10.31857/S0207401X21120025
- Базунова М.В., Мустакимов Р.А., Кулиш Е.И. // Хим. физика. 2021. Т. 40. № 9. С. 72; https://doi.org/10.31857/S0207401X21090028
- Васильев А.А., Карпачева Г.П., Дзидзигури Э.Л., Сидорова Е.Н. Компьютерное приложение “ДЕАМ” для определения размерных характеристик материалов и анализ данных: А.с. 2019660702. РФ // БИ. 2019. № 8.
