Effect of the formation method of ZnO–In2O3 composites on their structural characteristics and conductivity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Composites based on indium oxide containing different amounts of zinc oxide were synthesized by hydrothermal and impregnation methods. The phase composition, structure, and specific surface of the obtained composites were studied by various physicochemical methods. The electrophysical properties of composites synthesized by different methods are compared. It is shown that the method of formation has a significant effect on the structural characteristics of the composites, which in turn leads to the implementation of various conduction mechanisms.

Full Text

Restricted Access

About the authors

M. I. Ikim

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: ikimmary1104@gmail.com
Russian Federation, Moscow

E. Y. Spiridonova

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Russian Federation, Moscow

V. F. Gromov

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Russian Federation, Moscow

G. N. Gerasimov

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Email: ikimmary1104@gmail.com
Russian Federation, Moscow

L. I. Trakhtenberg

Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences; Lomonosov Moscow State University

Email: ikimmary1104@gmail.com
Russian Federation, Moscow; Moscow

References

  1. N. Barsan, D. Koziej, U. Weimar, Sens. Actuators B. 121, 18 (2007).
  2. J.M. Walker, S.A. Akbar, P.A. Morris, Sens. Actuators B. 286, 624 (2019).
  3. P.T. Moseley, Meas. Sci. Technol. 28, 082001 (2017).
  4. K.S. Kurmangaleev, M.A. Kozhushner, L.I. Trakhtenberg, Russ. J. Phys. Chem. B 14, 1063 (2020).
  5. L. Wang, L. Yin, D. Zhang, R.G. Xiang, Sensors. 10, 2088 (2010).
  6. G. N. Gerasimov, V. F. Gromov, M. I. Ikim, L. I. Trakhtenberg, Russ. J. Phys. Chem. B 15, 1072 (2021).
  7. G. Korotcenkov, B.K. Cho, Progress in Crystal Growth and Characterization of Materials. 58, 167 (2012).
  8. L.I. Trakhtenberg, G.N. Gerasimov, V.F. Gromov, T.V. Belysheva, O.J. Ilegbusi, Sens. Actuators B. 187, 514 (2013).
  9. T.V. Belysheva, E.Y. Spiridonova, M.I. Ikim et al., Russ. J. Phys. Chem. B 14, 298 (2020).
  10. M.I. Ikim, E.Y. Spiridonova, V.F. Gromov, G.N. Gerasimov, L.I. Trakhtenberg, Russ. J. Phys. Chem. B 16, 1 (2022).
  11. V. F. Gromov, M. I. Ikim, G. N. Gerasimov, L. I. Trakhtenberg, Russ. J. Phys. Chem. B 15, 1084 (2021).
  12. A.L. Efros, The Physics and the Geometry of Disorder (Nauka, Moscow, 1982) [in Russian].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Survey X-ray spectra of ZnO–In2O3 composites of various compositions obtained by the hydrothermal method.

Download (340KB)
3. Fig. 2. SEM image of a hydrothermal composite 5%ZnO–95%In2O3.

Download (482KB)
4. Fig. 3. TEM image of a 10%ZnO–90%In2O3 composite obtained by impregnation.

Download (609KB)
5. Fig. 4. Adsorption (filled symbols) and desorption (empty symbols) isotherms of N2 at a temperature of 77 K: 1 – impregnated sample of 5%ZnO–95% In2O3, 2 – hydrothermal sample of 5%ZnO–95%In2O3.

Download (121KB)
6. Fig. 5. Concentration dependence of the resistance in air of ZnO–In2O3 nanocomposite films: 1 – hydrothermal method, 2 – impregnation method (T = 330 °C).

Download (139KB)

Copyright (c) 2024 Russian Academy of Sciences