Mechanism of Sm2MoO6 phase formation from a mechanically activated oxide mixture

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The mechanism of phase formation from (1) the initial and (2) the mechanically activated mixture of Sm2O3 + + MoO3 oxides has been studied by DSC in an oxygen atmosphere. It is shown that different mechanisms of samarium oxymolybdate synthesis are realised in these two cases. As a result of the mechanochemical action at room temperature, a nano-sized mixture of Sm2(MoO4)3 and Sm2O3 was obtained. Upon heating, the first stage is the crystallisation of Sm2(MoO4)3, whose interaction with Sm2O3 in the second stage at 900 °C leads to the synthesis of oxymolybdate Sm2MoO6 with the scheelite structure, and this structure type is stable up to 1400 °C. The kinetic experiment in a DSC cell shows only an apparent similarity of the phase formation mechanism with a decrease of the main exoeffects by 70 °C for a mechanically activated mixture of oxides. At the same time, the study of the mechanism of phase formation by isothermal exposure at different temperatures reveals the main advantages of ceramic synthesis from an activated oxide mixture:

  1. partially mechanosynthesis of the intermediate compound Sm2(MoO4)3 takes place at room temperature;
  2. the high degree of interaction between the mechanically activated oxides allows single phase ceramics to be synthesised in a single step over a wide temperature range.

The total conductivity of Sm2MoO6 with a scheelite structure, which turned out to be p-type (1 · 10−6 S/cm at 600 °C), was studied.

Full Text

Restricted Access

About the authors

E. D. Baldin

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: baldin.ed16@physics.msu.ru
Russian Federation, Moscow

G. A. Vorobieva

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: baldin.ed16@physics.msu.ru
Russian Federation, Moscow

I. V. Kolbanev

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: baldin.ed16@physics.msu.ru
Russian Federation, Moscow

N. V. Lyskov

Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS; National Research University “Higher School of Economics”

Email: baldin.ed16@physics.msu.ru
Russian Federation, Chernogolovka; Moscow

A. V. Shlyakhtina

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: baldin.ed16@physics.msu.ru
Russian Federation, Moscow

References

  1. G. Blasse, J. inorg. nucl. Chem. 28, 1488 (1966). https://doi.org/10.1016/0022-1902(66)80185-9
  2. L.H. Brixner, A.W. Sleight, M.S. Licis, Journal of Solid State Chemistry. 5, 2, 186 (1972). https://doi.org/ 10.1016/0022-4596(72)90027-8
  3. J.S. Xue, M. R.Antonio, L. Soderholm, Chem. Mater. 7. https://doi.org/ 333 (1995). 10.1021/cm00050a015
  4. K.P. Mani, G. Vimal., P.R. Biju, C. Joseph et al., ECS J. Solid State Sci. Technol. 4, 5, 67 (2015). https://doi.org/ 10.1149/ 2.0131505jss
  5. K. Selvakumar, T.H. Oh, T. Vijayaraj, R. K Gokul. et al., Colloids and Surfaces A: Physicochemical and Engineering Aspects. 650, 129545. (2022). https://doi.org/ 10.1016/j.colsurfa.2022.129545
  6. Q. Li, V. Thangadurai, Journal of Power Sources. 196, 1, 169 (2011). https://doi.org/10.1016/j.jpowsour.2010.06.055
  7. V.K. Yanovskii, V.I. Voronkova, Fizika Tverdogo Tela (In Russian). https://doi.org/19, 3318 (1977).
  8. E.I. Orlova, Y.A. Morkhova, A.V. Egorova et al., J. Phys. Chem. C. 126, 23, 9623 (2022). https://doi.org/ 10.1021/acs.jpcc.2c01837
  9. A.V. Shlyakhtina, M. Avdeev, N.V. Lyskov et al., Dalton Trans. 49, 9, 2833 (2020). https://doi.org/ 10.1039/C9DT04724G
  10. A. Chychko, L. Teng, S. Seetharaman, Steel Research Int. 81, 9, 784 (2010). https://doi.org/ 10.1002/srin.201000055
  11. A.V. Shlyakhtina, I.V. Kolbanev, L.G. Shcherbakova, Chemical Physics Reports 17, 8, 1463 (1998).
  12. A.V. Shlyakhtina, I.V. Kolbanev, L.G. Shcherbakova, Khimicheskaya Fizika (In Russian) 20, 94 (2001).
  13. I.V. Kolbanev, E.N. Degtyarev et al., J. Am. Ceram. Soc. 2021. V. 104, 11, 5698 (2021). https://doi.org/ 10.1111/jace.17939
  14. A.V. Shlyakhtina, I.V. Kolbanev, E.N. Degtyarev et al., Solid State Ionics. 320, 272 (2018). https://doi.org/ 10.1016/j.ssi. 2018.02.004
  15. Bayan, E.M., Lupeiko, T.G., Pustovaya, L.E., Russ. J. Phys. Chem. B 13, 383 (2019). https://doi.org/ 10.1134/S1990793119020131
  16. L.G. Mamsurova, N.G. Trusevich, A.A. Vishnev et al., Russ. J. Phys. Chem. B 14, 986 (2020). https://doi.org/ 10.1134/S199079312006024X
  17. A.A. Vasilev, E.L. Dzidziguri, M.N. Efimov, et al., Russ. J. Phys. Chem. B 15, 381 (2021). https://doi.org/ 10.1134/S1990793121030313
  18. M.I. Alymov, B.S. Seplyarskii, S.G. Vadchenko, et al., Russ. J. Phys. Chem. B 15, 352 (2021). https://doi.org/ 10.1134/S1990793121020135
  19. T. Schustereit, S.L. Müller, T. Schleid, et al., Crystals. 1. 4, 244 (2011). https://doi.org/ 10.3390/cryst1040244
  20. Чебышев К. А., Бережная Т.С., Чайка Э.В. и др. // Химические проблемы современности 2022: Сборник материалов VI Международной научной конференции студентов, аспирантов и молодых ученых, Донецк, 2022, С. 70.
  21. T.N. Bondarenko, V.N. Uvarov, S.V. Borisenko et al., Journal of the Korean Physical Society. 32, S65 (1998).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction patterns of a mixture of Sm2O3 + MoO3 oxides: 1 – after mechanical activation at room temperature for 1 hour, 2 – after isothermal exposure for 220 hours of the m/a mixture at a temperature of 340 °C, after heating the m/a mixture at DSC chamber up to (3) 440, (4) 495, (5) 569, (6) 640, (7) 765, (8) 865, (9) 910 °C. The circles mark the positions of the lines of the Sm2(MoO4)3 phase. The triangle indicates the peak of the (202) plane of the scheelite phase Sm2MoO6.

Download (787KB)
3. Fig. 2. DSC data for an m/a mixture of Sm2O3 + MoO3 oxides in heating mode (1), cooling (1′) and a mixture ground in a mortar without pre-activation in heating mode (2) at a rate of 10 °C/min.

Download (211KB)
4. Fig. 3. X-ray diffraction patterns of ceramics obtained by annealing a mechanically activated mixture of Sm2O3 + MoO3 oxides: 1 – 900 °C for 48 hours; 2 – 1200 °C 4 h; 3 – 1300 °C 2 hours; 4 – 1400 °C 1 hour; 5 – 1400 °C 1 hour + 1500 °C 1 hour; 6 – 1500 °C 1 hour; 7 – 1600 °C 1 hour.

Download (735KB)
5. Fig. 4. Hodograph of the impedance of the monoclinic phase of Sm2MoO6 in dry (■) and humid (□) air at 613 °C; solid lines are fitting curves.

Download (195KB)
6. Fig. 5. Temperature dependences of volumetric conductivity of the monoclinic phase of Sm2MoO6, measured in dry (■) and humid (□) air.

Download (156KB)

Copyright (c) 2024 Russian Academy of Sciences