Kinetic features of the methylinoleate oxidation in micelles of sodium dodecyl sulfate
- Authors: Molodochkina S.V.1, Loshadkin D.V.2, Pliss E.M.1
-
Affiliations:
- P.G. Demidov Yaroslavl State University
- Yaroslavl State Technical University
- Issue: Vol 43, No 1 (2024)
- Pages: 52-59
- Section: Kinetics and mechanism of chemical reactions, catalysis
- URL: https://vestnikugrasu.org/0207-401X/article/view/674998
- DOI: https://doi.org/10.31857/S0207401X24010063
- EDN: https://elibrary.ru/minjqj
- ID: 674998
Cite item
Abstract
By combining kinetic and physicochemical methods with computer simulation, new information was obtained on the oxidation of methyllinoleate (LH) in micelles of sodium dodecyl sulfate (SDS) at 323 K. The dynamics of the process is related to the nature of the change in the volume of the micellar phase (Vmic). A gradual increase in Vmic leads to a decrease in the concentration of the oxidation substrate. This change occurs not only due to chemical reactions, but also due to a change in the volume of the microreactor in which the chemical transformation takes place. The accumulation of hydroperoxides inside those micelles in which LH is oxidized leads to the transformation of their structure and the formation of mixed micelles. Kinetic analysis shows that chain termination can occur by a mixed mechanism. The reaction order according to the initiator varies from 0.61 to 0.71. Leading oxidation chains, peroxy radicals (LO2•), are involved in both quadratic and linear termination. Linear termination occurs with the participation of hydroperoxyl radicals (HO2•). The formation of HO2• is due to the reaction LO2• → → product + HO2• occurring in the organic phase. The resulting HO2• goes into the aqueous phase, where the rate of their disproportionation is very low. Formally, this is fixed as a linear open circuit.
Full Text

About the authors
S. V. Molodochkina
P.G. Demidov Yaroslavl State University
Email: pliss@uniyar.ac.ru
Russian Federation, Yaroslavl
D. V. Loshadkin
Yaroslavl State Technical University
Email: pliss@uniyar.ac.ru
Russian Federation, Yaroslavl
E. M. Pliss
P.G. Demidov Yaroslavl State University
Author for correspondence.
Email: pliss@uniyar.ac.ru
Russian Federation, Yaroslavl
References
- E. T. Denisov, I. B. Afanas’ev, Oxidation and Antioxidants in Organic Chemistry and Biology, CRC, Boca Raton–London–N.Y.–Singapore: CRC Press, (2005). https://doi.org/10.1201/9781420030853
- E. N. Frankel. Lipid Oxidation, The Oily Press Dundee, UK, 488 (2005).
- E. B. Menshchikova, V. Z. Lankin, N. K. Zenkov, et al., Oxidative stress. Prooxidants and antioxidants. M.: Slovo, 553 (2006).
- M. G. Sergeeva, A. T. Varfolomeeva, M.: Public education, 256 (2006).
- E. Pliss, R. Safiuli, S. Zlotsky, Inhibited Oxidation of Unsaturated Compounds, Kinetics, Mechanism, Correlation of Structure with Reactionary Ability, LAP LAMBERT Academic Publishing: Saarbruchen. Germany, 130 (2012).
- C. Wilailuk, R. Elias, D. McClements, et al., Critical Reviews in Food Science and Nutrition, 47, 299 (2007). https://doi.org/10.1080/10408390600754248
- E. Niki, Encyclopedia of Radicals in Chemistry, Biology and Materials, Wiley, Chichester, West Sussex; Hoboken, N.J.: John Wiley & Sons, Ltd, UK, (2012). https://doi.org/10.1002/9781119953678.rad052
- C. Chatgilialoglu, A. Studer, Encyclopedia of Radicals in Chemistry, Biology and Materials, West Sussex.: John Wiley & Sons, Ltd, 2324 (2012). https://doi.org/ 10.1021/jz500502q
- L. Buchachenko, Magneto-Biology and Medicine. Nova Science: Hauppauge, NY. USA, 248 (2014).
- J. Garrec, A. Monari, X. Assfeld, et al., J. Phys. Chem. Lett. 5, 1653 (2014). https://doi.org/10.1021/jz500502q
- V. A. Roginsky, Kinet. Catal. 37, 488 (1996).
- V. A. Roginsky, T. K. Barsukova, Chem. Phys. Lipids. 11, 87 (2001). https://doi.org/10.1016/s0009-3084(01)00148-7
- V. A. Roginsky, Arch. Biochem. Biophys. 414, 261 (2003). https://doi.org/10.1016/s0003-9861(03)00143-7
- V. A. Roginsky, T. K. Barsukova, D.V. Loshadkin, et al., Chem. Phys.
- V. A. Roginsky, Chem. Phys. Lipids. 163, 127 (2010).
- H. Yin, H. Xu, N. Porter, Chem Rev. 111, 5944 (2011).
- N. A. Porter, J. Org. Chem. 78, 3511 (2013). https://doi.org/10.1021/jo4001433
- E. M. Pliss, D. V. Loshadkin, A. M. Grobov, et al., Russ. J. Phys. Chem. B. 34, 72 (2015). https://doi.org/ 10.7868/S0207401X15010094
- O. T. Kasaikina, E. A. Mengele, I. G. Plashchina, Colloid J. 78, 767 (2016). https://doi.org/10.1134/S1061933X16060065
- D. V. Loshadkin, E. M. Pliss, O. T. Kasaikina, J. Appl. Chem. 93, 1083 (2020). https://doi.org/10.31857/S0044461820070178
- M. E. Soloviev, I. V. Moskalenko, E. M. Pliss, Reac. Kin. Mech. Cat. 127, 561 (2019). https://doi.org/10.1007/s11144-019-01613-w
- E. M. Pliss, M. E. Soloviev, D. V. Loshadkin, et al., Chem. Phys. Lipids. 237, 7 (2021). https://doi.org/10.1016/j.chemphyslip.2021.105089
- M. Musialik, M. Kita, G. Litwinienko, Org. Biomol. Chem. 21, 667 (2008). https://doi.org/10.1039/b715089j
- I. V. Tikhonov, E. M. Pliss, L. I. Borodin, et al., Rus. J. Phys. Chem. B. 11, 400 (2017). https://doi.org/10.7868/S0207401X1706015
- I. V. Tikhonov, L. I. Borodin, E. M. Pliss, Rus. J. Phys. Chem. B. 11, 910 (2020). https://doi.org/10.31857/S0207401X2011014X
- E. M. Pliss, A. V. Sokolov, D. V. Loshadkin, S.V. Popov, “Kinetics 2012 — a program for calculating the kinetic parameters of chemical and biological processes”, version 2.0, Official Bulletin of the Federal Service for Intellectual Property Computer Programs. Database. Topologies of integrated circuits, No. 10. 2021. Certificate of state registration of computer programs, 2021665836.
- F. Antunes, R. Pinto, L. Ross, et al., Int. J. Chem. Kin. 30, 753 (1998).
- E. T. Denisov, T. G. Denisova, T. S. Pokidova, Handbook of Free Radical Initiators, John Wiley & Sons, Hoboken, NJ, 878 (2003).
- B. Frei, R. Stocker, B. Ames, Antioxidant defenses and lipid peroxidation in human blood plasma, Proc. Nat. Acad. Sci. USA, 85, 9748 (1988). https://doi.org/ 10.1073/pnas.85.24.9748
- G. Kortum, W. Vogel, K. Andrussow, Dissociation Constants of Organic Acids in Aqueous Solution, N.Y.: Plenum Press, 386 (1961).
- A. L. Buchachenko, L. A. Wasserman, I. L. Barashkova, et al., Rus. J. Phys. Chem. B 12, 382 (2018). https://doi.org/10.1134/S1990793118030053
- A. L. Buchachenko, D. A. Kuznetsov, Russ. J. Phys. Chem. B 15, 11 (2021). https://doi.org/10.1134/S1990793121010024
- S. V. Stovbun, D. V. Zlenko, A. A. Bukhvostov, et al., Sci. Rep, 13, 465 (2023). https:doi.org/10.1038/s41598-022-26744-4
- I. F. Rusina, T. L. Veprintsev, R. F. Vasil’ev, Russ. J. Phys. Chem. B 16, 50 (2022). https:doi.org/10.1134/S1990793122010274
- A. G. Davtyan, Z. O. Manukyan, S. D. Arsentev, et al., Russ. J. Phys. Chem. B 17, 336 (2023). https:doi.org/ 10.1134/S1990793123020239
Supplementary files
