Kinetic features of the methylinoleate oxidation in micelles of sodium dodecyl sulfate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

By combining kinetic and physicochemical methods with computer simulation, new information was obtained on the oxidation of methyllinoleate (LH) in micelles of sodium dodecyl sulfate (SDS) at 323 K. The dynamics of the process is related to the nature of the change in the volume of the micellar phase (Vmic). A gradual increase in Vmic leads to a decrease in the concentration of the oxidation substrate. This change occurs not only due to chemical reactions, but also due to a change in the volume of the microreactor in which the chemical transformation takes place. The accumulation of hydroperoxides inside those micelles in which LH is oxidized leads to the transformation of their structure and the formation of mixed micelles. Kinetic analysis shows that chain termination can occur by a mixed mechanism. The reaction order according to the initiator varies from 0.61 to 0.71. Leading oxidation chains, peroxy radicals (LO2), are involved in both quadratic and linear termination. Linear termination occurs with the participation of hydroperoxyl radicals (HO2). The formation of HO2 is due to the reaction LO2 → → product + HO2 occurring in the organic phase. The resulting HO2 goes into the aqueous phase, where the rate of their disproportionation is very low. Formally, this is fixed as a linear open circuit.

Full Text

Restricted Access

About the authors

S. V. Molodochkina

P.G. Demidov Yaroslavl State University

Email: pliss@uniyar.ac.ru
Russian Federation, Yaroslavl

D. V. Loshadkin

Yaroslavl State Technical University

Email: pliss@uniyar.ac.ru
Russian Federation, Yaroslavl

E. M. Pliss

P.G. Demidov Yaroslavl State University

Author for correspondence.
Email: pliss@uniyar.ac.ru
Russian Federation, Yaroslavl

References

  1. E. T. Denisov, I. B. Afanas’ev, Oxidation and Antioxidants in Organic Chemistry and Biology, CRC, Boca Raton–London–N.Y.–Singapore: CRC Press, (2005). https://doi.org/10.1201/9781420030853
  2. E. N. Frankel. Lipid Oxidation, The Oily Press Dundee, UK, 488 (2005).
  3. E. B. Menshchikova, V. Z. Lankin, N. K. Zenkov, et al., Oxidative stress. Prooxidants and antioxidants. M.: Slovo, 553 (2006).
  4. M. G. Sergeeva, A. T. Varfolomeeva, M.: Public education, 256 (2006).
  5. E. Pliss, R. Safiuli, S. Zlotsky, Inhibited Oxidation of Unsaturated Compounds, Kinetics, Mechanism, Correlation of Structure with Reactionary Ability, LAP LAMBERT Academic Publishing: Saarbruchen. Germany, 130 (2012).
  6. C. Wilailuk, R. Elias, D. McClements, et al., Critical Reviews in Food Science and Nutrition, 47, 299 (2007). https://doi.org/10.1080/10408390600754248
  7. E. Niki, Encyclopedia of Radicals in Chemistry, Biology and Materials, Wiley, Chichester, West Sussex; Hoboken, N.J.: John Wiley & Sons, Ltd, UK, (2012). https://doi.org/10.1002/9781119953678.rad052
  8. C. Chatgilialoglu, A. Studer, Encyclopedia of Radicals in Chemistry, Biology and Materials, West Sussex.: John Wiley & Sons, Ltd, 2324 (2012). https://doi.org/ 10.1021/jz500502q
  9. L. Buchachenko, Magneto-Biology and Medicine. Nova Science: Hauppauge, NY. USA, 248 (2014).
  10. J. Garrec, A. Monari, X. Assfeld, et al., J. Phys. Chem. Lett. 5, 1653 (2014). https://doi.org/10.1021/jz500502q
  11. V. A. Roginsky, Kinet. Catal. 37, 488 (1996).
  12. V. A. Roginsky, T. K. Barsukova, Chem. Phys. Lipids. 11, 87 (2001). https://doi.org/10.1016/s0009-3084(01)00148-7
  13. V. A. Roginsky, Arch. Biochem. Biophys. 414, 261 (2003). https://doi.org/10.1016/s0003-9861(03)00143-7
  14. V. A. Roginsky, T. K. Barsukova, D.V. Loshadkin, et al., Chem. Phys.
  15. V. A. Roginsky, Chem. Phys. Lipids. 163, 127 (2010).
  16. H. Yin, H. Xu, N. Porter, Chem Rev. 111, 5944 (2011).
  17. N. A. Porter, J. Org. Chem. 78, 3511 (2013). https://doi.org/10.1021/jo4001433
  18. E. M. Pliss, D. V. Loshadkin, A. M. Grobov, et al., Russ. J. Phys. Chem. B. 34, 72 (2015). https://doi.org/ 10.7868/S0207401X15010094
  19. O. T. Kasaikina, E. A. Mengele, I. G. Plashchina, Colloid J. 78, 767 (2016). https://doi.org/10.1134/S1061933X16060065
  20. D. V. Loshadkin, E. M. Pliss, O. T. Kasaikina, J. Appl. Chem. 93, 1083 (2020). https://doi.org/10.31857/S0044461820070178
  21. M. E. Soloviev, I. V. Moskalenko, E. M. Pliss, Reac. Kin. Mech. Cat. 127, 561 (2019). https://doi.org/10.1007/s11144-019-01613-w
  22. E. M. Pliss, M. E. Soloviev, D. V. Loshadkin, et al., Chem. Phys. Lipids. 237, 7 (2021). https://doi.org/10.1016/j.chemphyslip.2021.105089
  23. M. Musialik, M. Kita, G. Litwinienko, Org. Biomol. Chem. 21, 667 (2008). https://doi.org/10.1039/b715089j
  24. I. V. Tikhonov, E. M. Pliss, L. I. Borodin, et al., Rus. J. Phys. Chem. B. 11, 400 (2017). https://doi.org/10.7868/S0207401X1706015
  25. I. V. Tikhonov, L. I. Borodin, E. M. Pliss, Rus. J. Phys. Chem. B. 11, 910 (2020). https://doi.org/10.31857/S0207401X2011014X
  26. E. M. Pliss, A. V. Sokolov, D. V. Loshadkin, S.V. Popov, “Kinetics 2012 — a program for calculating the kinetic parameters of chemical and biological processes”, version 2.0, Official Bulletin of the Federal Service for Intellectual Property Computer Programs. Database. Topologies of integrated circuits, No. 10. 2021. Certificate of state registration of computer programs, 2021665836.
  27. F. Antunes, R. Pinto, L. Ross, et al., Int. J. Chem. Kin. 30, 753 (1998).
  28. E. T. Denisov, T. G. Denisova, T. S. Pokidova, Handbook of Free Radical Initiators, John Wiley & Sons, Hoboken, NJ, 878 (2003).
  29. B. Frei, R. Stocker, B. Ames, Antioxidant defenses and lipid peroxidation in human blood plasma, Proc. Nat. Acad. Sci. USA, 85, 9748 (1988). https://doi.org/ 10.1073/pnas.85.24.9748
  30. G. Kortum, W. Vogel, K. Andrussow, Dissociation Constants of Organic Acids in Aqueous Solution, N.Y.: Plenum Press, 386 (1961).
  31. A. L. Buchachenko, L. A. Wasserman, I. L. Barashkova, et al., Rus. J. Phys. Chem. B 12, 382 (2018). https://doi.org/10.1134/S1990793118030053
  32. A. L. Buchachenko, D. A. Kuznetsov, Russ. J. Phys. Chem. B 15, 11 (2021). https://doi.org/10.1134/S1990793121010024
  33. S. V. Stovbun, D. V. Zlenko, A. A. Bukhvostov, et al., Sci. Rep, 13, 465 (2023). https:doi.org/10.1038/s41598-022-26744-4
  34. I. F. Rusina, T. L. Veprintsev, R. F. Vasil’ev, Russ. J. Phys. Chem. B 16, 50 (2022). https:doi.org/10.1134/S1990793122010274
  35. A. G. Davtyan, Z. O. Manukyan, S. D. Arsentev, et al., Russ. J. Phys. Chem. B 17, 336 (2023). https:doi.org/ 10.1134/S1990793123020239

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the rate of oxidation of methyl linoleate in SDS micelles on time in a phosphate buffer solution at pH 7.4. [AARN] = 8 mM, [LH] = 3 mM,  - [SDS] = 100 mM,  - [SDS] = 150 mM.

Download (114KB)
3. Fig. 2. Dependence of the rate of oxidation of methyl linoleate in SDS micelles on time in a phosphate buffer solution at pH 7.4. [AARN] = 8 mM, [LH] = 6 mM,  - [SDS] = 100 mM,  - [SDS] = 150 mM.

Download (117KB)
4. Fig. 3. Kinetic curves of oxygen absorption during the oxidation of methyl linoleate in SDS micelles in a phosphate buffer solution at pH 7.4. [SDS] = 100 mM, [LH] = 5 mM, 1 - [AAPH] = 12 mM, 2 - [AAPH] = 8 mM, 3 - [AAPH] = 4 mM.

Download (110KB)
5. Fig. 4. Dependence of the kinetics of oxygen absorption during the oxidation of methyl linoleate in SDS micelles in a phosphate buffer solution on its concentration at pH = 7.4, [AAPH] = 8 mM, [SDS] = 100 mM:  — [LH] = = 7.5 mM,  — [LH] = 5.0 mM,  — [LH] = 2.5 mM.

Download (129KB)
6. Fig. 5. Kinetic curves of oxygen absorption during the oxidation of methyl linoleate in SDS micelles in a phosphate buffer solution at pH 7.4, [AAPH] = 8 mM, [SDS] = 150 mM:  — [LH] = 9.0 mM,  — [LH] = 6.0 mM,  — [LH] = 3.0 mM.

Download (134KB)

Copyright (c) 2024 Russian Academy of Sciences