Kinetic modeling of the effect of the conditions of conjugate oxidation of propane and ethylene on the yield of propylene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study of the oxidation of propane-ethylene mixtures by numerical kinetic modeling allowed us to establish that in the range of 400–600 oC with an increase in the conversion of propane with an increase in temperature, the selectivity of propylene formation passes through a maximum, the position of which depends on the concentration of ethylene in the initial mixture. The addition of ethylene to the initial mixture leads to a reduction in propane consumption and an increase in the selectivity of propylene formation. The conditions under which ethylene introduced into the initial mixture is not consumed during the process are determined, so formally it can be considered as a catalyst, and the process of propane oxidation as proceeding in a pseudo-catalytic regime.

Full Text

Restricted Access

About the authors

S. D. Arsentev

Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia

Author for correspondence.
Email: arsentiev53@mail.ru
Armenia, Yerevan

A. H. Davtyan

Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia

Email: arsentiev53@mail.ru
Armenia, Yerevan

Z. H. Manukyan

Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia

Email: arsentiev53@mail.ru
Armenia, Yerevan

L. A. Tavadyan

Institute of Chemical Physics by A.B. Nalbandyan, National Academy of Sciences of Republic of Armenia

Email: arsentiev53@mail.ru
Armenia, Yerevan

L. N. Strekova

N.N. Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences

Email: arsentiev53@mail.ru
Russian Federation, Moscow

V. S. Arutyunov

N.N. Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences

Email: arsentiev53@mail.ru
Russian Federation, Moscow

References

  1. H.J. Curran, Proceedings of the Combustion Institute, 37, 57 (2019). https://doi.org/10.1016/j.proci. 2018.06.054
  2. J. Zador, C.A. Taatjes, R.X. Fernandes, Progress in Energy and Combustion Science. 37, 371 (2011). https://doi.org/10.1016/j.pecs.2010.06.006
  3. A.V. Arutyunov, K.Ya. Troshin, A.V. Nikitin, A.A. Belyaev, V.S. Arutyunov, J. Phys.: Conf. Ser. 1141 012153 (2018)
  4. E.L. Petersen, D.M. Kalitan, S. Simmons, H.J. Curran, J.M. Simmie, Proceedings of the Combustion Institute. 31, 447 (2007). https://doi.org/10.1016/j.proci.2006.08.034
  5. A. Ramalingam, S. Panigrahy, Y. Fenard, H. Curran, K.A. Heufer, Combustion and Flame. 223, 361 (2021). https://doi.org/10.1016/j.combustflame.2020.10.020
  6. Di He, Y. Yu, Y. Kuang, C. Wang, Appl. Sci. 11, 4107 (2021). https://doi.org/10.3390/app11094107
  7. M. Sieradzka, P. Rajca, M. Zajemska, A. Mlonka-Medrala, A. Magdziarz, Journal of Cleaner Production. 248, 119277 (2020). https://doi.org/10.1016/j.jclepro.2019.119277
  8. S. Schuh, J. Frühhaber, T. Lauer, F. Winter, Energies. 12, 4396 (2019). https://doi.org/10.3390/en12224396
  9. The San Diego Mechanism // URL: https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html.
  10. GRI-Mech 3.0 // URL: http://combustion.berkeley.edu/gri_mech/releases.html.
  11. AramcoMech 3.0 // URL: http://c3.nuigalway.ie/combustionchemistrycentre/mechanismdownloads/.
  12. NUIGMech1.1 // URL: http://c3.nuigalway.ie/combustionchemistrycentre/mechanismdownloads/.
  13. A.M. Starik, N.S. Titova, L.S. Yanovskii, Kinet. Catal. 40, 7 (1999).
  14. M.V. Petrova, F. A. Williams. Combust. Flame. 144, 526 (2006). https://doi.org/10.1016/J.COMBUSTFLAME.2005. 07.016
  15. A.A. Konnov Development and validation of a detailed reaction mechanism for the combustion of small hydrocarbons. // 28-th Symposium (Int.) on Combustion. Edinburgh. 2000. Abstr. Symp. Pap. P. 317.
  16. D.N. Koert, W.J. Pitz, J.W. Bozzelli, N.P. Cernansky. Proc. Combust. Inst. 26, 633 (1996). https://doi.org/10.1016/S0082-0784(96)80270-0
  17. P. Dagaut, M. Cathonnet, J.-C. Boettner. Int. J. Chem. Kinet. 24, 813 (1992). https://doi.org/10.1002/KIN.550240906
  18. S.D. Arsentev, L.A. Tavadyan, M.G. Bryukov, A.S. Palankoeva, A.A. Belyaev, V.S. Arutyunov. Russian Journal of Physical Chemistry B. 16, 6, 1019 (2022).
  19. A.H. Davtyan, Z.H. Manukyan, S.D. Arsentev, L.A. Tavadyan, V.S. Arutyunov. Russian Journal of Physical Chemistry B. 17, 5, 1130 (2023).
  20. A.S. Palankoeva, A.A. Belyaev, V.S. Arutyunov. Russian Journal of Physical Chemistry B. 16, 399 (2022). https://doi.org/10.1134/S1990793122030204
  21. J.A. Piehl, A. Zyada, L. Bravo, O. Samimi-Abianeh. Journal of Combustion. Article ID 8406754 (2018). https://doi.org/10.1155/2018/8406754
  22. E. Hu, Z. Xu, Z. Gao, J. Xu, Z.-H. Huang. Fuel. 256, 115933 (2019). https://doi.org/10.1016/j.fuel. 2019.115933
  23. D. Healy, D.M. Kalitan, C.J. Aul, E.L. Petersen, G. Bourque, H.J. Curran. Energy and Fuels. 24, 1521 (2010). https://doi.org/10.1021/ef9011005
  24. N.M. Poghosyan, M.D. Poghosyan, L.N. Strekova, L.A. Tavadyan, V.S. Arutyunov. Russian Journal of Physical Chemistry B. 9, 218 (2015). https://doi.org/10.1134/S1990793115020104
  25. N.M. Poghosyan, M.D. Poghosyan, S.D. Arsentev, L.N. Strekova, L.A. Tavadyan, V.S. Arutyunov. Russian Journal of Physical Chemistry B. 9, 231 (2015). https://doi.org/10.1134/S199079311502027X
  26. N.M. Poghosyan, M.D. Poghosyan, O.V. Shapovalova, A.V. Nikitin, L.N. Strekova, V.S. Arutyunov. Combustion and Explosion. 9, 83 (2016).
  27. N.M. Poghosyan, M.D. Poghosyan, S.D. Arsentev, L.N. Strekova, L.A. Tavadyan, V.S. Arutyunov. Petroleum Chemistry. 56, 834 (2016). https://doi.org/10.1134/S0965544116090176
  28. N.M. Poghosyan, M.Dj. Poghosyan, S.D. Arsentev, L.A. Tavadyan, L.N. Strekova, V.S. Arutyunov. Petroleum Chemistry. 60, 316 (2020). https://doi.org/10.1134/S0965544120030172
  29. N.M. Poghosyan, M.Dj. Poghosyan, O.V. Shapovalova, A.V. Nikitin, V.S. Arutyunov. Russian Journal of Physical Chemistry B. 10. 907 (2016). https://doi.org/10.1134/S1990793116060075
  30. S.M. Aldoshin, V.S. Arutyunov, V.I. Savchenko, I.V. Sedov, A.V. Nikitin, I.G. Fokin. Russian Journal of Physical Chemistry B. 15, 498 (2021). https://doi.org/10.1134/S1990793121030039
  31. ANSYS Academic Research CFD. Лицензия ФИЦ ХФ РАН идентифицируется по Customer ID:1080307
  32. R.R. Grigoryan, S.D. Arsentev, A.A. Mantashyan. Chemistry and chemical technology. YerSU. 1983. № 2. P. 15.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Kinetic curves of propane (1, 2) and propylene (3, 4) consumption, obtained experimentally (1, 3) and by modeling (2, 4). Mixture C3H8 : O2 : (Ar + + C3H6) composition 1 : 1 : (0.67 + 0.33), T = 360 °C, P = 270 Torr.

Download (133KB)
3. Fig. 2. Dependence of propane conversion KS3H8 (1, 2) and selectivity of propylene formation SC3H6 (3, 4) on temperature, obtained experimentally (2, 3) and by modeling (1, 4). A mixture of C2H4 : C3H8 : O2 composition 4.5 : 8 : 1, P = 660 Torr.

Download (151KB)
4. Fig. 3. Dependence of the ratio of the initial concentration of ethylene to its final concentration during the oxidation of a propane-ethylene mixture on the initial concentration of ethylene and the process temperature: 1 - 400 °C, 2 - 450 °C, 3 - 500 °C, 4 - 550 °C, 5 — 600 °C. A mixture of C3H8 : O2 : (C2H4 + N2) composition 10 : 10 : 5, P = 1 atm.

Download (147KB)
5. Fig. 4. Calculated dependence of propane conversion of KS3H8 on temperature for various ethylene concentrations in a mixture of C3H8 : O2 : (C2H4 + N2) composition 10 : 5 : 5 at P = 1 atm: 1 - [C2H4]0 = 0. 2 - 5. 3 - 10, 4 - 15, 5 - 25 mol. %.

Download (145KB)
6. Fig. 5. Calculated dependence of the selectivity of formation of propylene KS3H8 on temperature for various concentrations of ethylene in a mixture of C3H8 : O2 : (C2H4 + N2) composition 10 : 5 : 5 at P = 1 atm: 1 - [C2H4]0 = 0, 2 - 5, 3 – 15, 4 – 25 mol. %.

Download (142KB)
7. Fig. 6. Relative speed of individual stages that contribute to changes in the concentrations of propylene (a) and ethylene (b), calculated at the moment of reaching the maximum concentration of propylene in a mixture of C3H8 : O2 : (C2H4 + N2) composition 10 : 5 : (5 + 0 ) at T = 500 °C.

Download (659KB)

Copyright (c) 2024 Russian Academy of Sciences