Cationic effect in the formation of toxic and antiviral properties of Keggon heteropoly compounds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Cytotoxicity indices (IC50) of Keggin’s phosphorus-molybdenum heteropoly acids (HPCAs) and their sodium and potassium salts on dog kidney cells (MDSC) were determined. The antiviral activity of these compounds against topical strains of influenza A (H3N2 and H1N1) was revealed. The dependence of the biological properties of polyoxometalates (POMs) on the elemental composition of their molecules has been confirmed. It has been shown that when some of the molybdenum atoms are replaced by vanadium atoms, HPCA and their salts acquire higher cytotoxicities, which increase monotonically as the number of substitutions increases. For the first time, the dependence of the biological activity of HPCA and their salts on the mass of cations has been established and interpreted. In vivo (on white outbred mice) the values of semi-lethal doses (DL50) of these compounds were established. For aqueous solutions of sodium and potassium salts of GPCA in a wide range of concentrations (from 0.05 μM to 15 μM), the values of the toxicity index (It) were determined on the model of motile cells. It has been established that GPCA and their salts are classified as moderately dangerous toxic substances and have selective antiviral activity, which at low concentrations (less than 15 μM) for influenza A strains is manifested mainly by a decrease in hemagglutination activity (HA).

Full Text

Restricted Access

About the authors

F. I. Dalidchik

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: domfdal@mail.ru
Russian Federation, Москва

O. A. Lopatina

Gamaleya Research Institute of Epidemiology and Microbiology

Email: domfdal@mail.ru
Russian Federation, Moscow

S. A. Kovalevsky

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: domfdal@mail.ru
Russian Federation, Moscow

E. I. Isaeva

Gamaleya Research Institute of Epidemiology and Microbiology

Email: domfdal@mail.ru
Russian Federation, Moscow

M. V. Bidevkina

Erisman Federal Scientific Center of Hygiene, Federal Service for Supervision of Consumer Rights Protection and Human Welfare

Email: domfdal@mail.ru
Russian Federation, Mytishchi

O. V. Baklanova

Gamaleya Research Institute of Epidemiology and Microbiology

Email: domfdal@mail.ru
Russian Federation, Moscow

E. A. Gushchina

Gamaleya Research Institute of Epidemiology and Microbiology

Email: domfdal@mail.ru
Russian Federation, Moscow

F. V. Lisitsyn

Gamaleya Research Institute of Epidemiology and Microbiology

Email: domfdal@mail.ru
Russian Federation, Moscow

E. M. Balashov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: embalashov@yandex.ru
Russian Federation, Moscow

M. V. Mezentseva

Национальный исследовательский центр эпидемиологии и микробиологии им. Н.Ф. Гамалеи

Email: domfdal@mail.ru
Russian Federation, Moscow

T. N. Pritchina

Gamaleya Research Institute of Epidemiology and Microbiology

Email: domfdal@mail.ru
Russian Federation, Moscow

References

  1. Catalano A., Iacopetta D., Ceramella J. et al. // Molecules. 2022. V. 27. № 3. P. 616.
  2. Rhule J.T., Hill C.L., Judd D.A. // Chem. Rev. 1998. V. 98. P. 327l.
  3. Aureliano M. // BioChem. 2022. V. 2. № 1. P. 8.
  4. Aureliano M., Gumerova N. I., Sciortino G. et al. // Coord. Chem. Rev. 2022. V. 454. P. 214344.
  5. Bij elic A., Aureliano M., Rompel A. // Angew. Chem. Intern. Ed. Engl. 2019.V. 58. № 10. P. 2980.
  6. Soares S.S., Henao F., Aureliano M. et al. // Chem. Res. Toxicol. 2008. V. 21. № 3. P. 607.
  7. Soares S.S., Gutierrez-Merino C., Aureliano M. // J. Inorg. Biochem. 2007. V. 101. № 5. P. 789.
  8. Aureliano M., Ohlin C.A. // Ibid. 2014. V. 137. P. 123.
  9. Khabriev R.U. Guidelines for the experimental (preclinical) study of new pharmacological substances. M.: Medicine, 2005.
  10. State Standard of the Russian Federation No. 862-st dated December 29, 1999. Evaluation of the biological effect of medical devices. Part 5. Cytotoxicity testing: in vitro methods. Annex A) Mobile cells.
  11. AT-50 Image Analyzer User Manual. Appendix to the operating manual for BMKI 01.00.00.00 RE.M.ZAO BMK-INVEST, 2009. p.51.
  12. National standard of the Russian Federation 12.1.007-76 Occupational safety standards system (SSBT). Harmful substances. Classification and general safety requirements (with Amendments № 1, 2).
  13. Virology: A practical approach. Ed. B. Mahy. Publisher: Oxford University Press, 1985.
  14. Lopatina O.A., Suetina I.A., Mezentseva M.V. et al. // Russ. J. Phys. Chem. B. 2020. V. 14. № 1. P. 81.
  15. Yamase T., Fujita H., Fukushima K. // Inorg. Chim. Acta. 1988. V. 151. P. 15.
  16. Dianat S., Bordbar A.-K., Tangestaninejad S. et al. // J. Inorg. Biochem. 2015. V. 152. P. 74.
  17. Qi W., Zhang B., Qi Y. et al. // Molecules. 2017. V. 22. № 9. P. 1535.
  18. Autzen H.E., Myasnikov A.G., Campbell M.G. et al. // Science. 2018. V. 359. № 6372. P. 228.
  19. Bajimaya S., Frankl T., Hayashi T. et al. // Virology. 2017. V. 510. P. 234.
  20. Kovalevskiy S.A., Lopatina O.A., Gushchina E.A. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. № 6. P. 1019.
  21. Dalidchik F.I., Balashov E.M., Baklanova O.V. et al. // Nanobiotechnology Reports. 2022. V. 17. № 2. P. 193.
  22. Lopatina O.A., Dalidchik F.I., Balashov E.M. et al. // Infectious diseases in the modern world: evolution, current and future threats: Proceedings of the XIV Annual All-Russian Congress on Infectious Diseases named after academician V.I. Pokrovsky // Moscow, March 28–30, 2022. M.: Medical Marketing Agency, 2022. P. 103.
  23. Chazal N., Gerlier D. // Microbiol. Mol Biol. Rev. 2003. V. 67. № 2. P. 226.
  24. Savintseva L.A., Avdoshin A.A., Ignatov S.K. // Russ. J. Phys. Chem. B. 2022. V. 16. № 3. P. 445.
  25. Shishkisha L.N., Kozlov M.V.,. Konstantinova T.V. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 141.
  26. Tereshkin E.V., Tereshkina K.B., Loiko N.G. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 564.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Visualization of a suspension of influenza A/California/07/09 virus incubated for 1 hour in an aqueous solution of H5PMo10V2O40 (100 μM): 1 - empty viral shells, 2 - intact HF.

Download (115KB)
3. Fig. 2. Control of MDSC cells (without the use of POM). Section of the surface of an MDSC cell infected with influenza virus A/California/07/09. Arrows indicate normal HF budding from the cell surface.

Download (119KB)
4. Fig. 3. Section of the surface of an MSDK cell infected with influenza A/California/07/09 virus after treatment with an aqueous solution of H5PMo10V2O40 (25 μM). The arrow indicates the group of defective HFs (without nucleoid).

Download (242KB)
5. Fig. 4. Section of villi on the surface of an MDSC cell after exposure to an aqueous solution of Na5PMo10V2O40 (20 µM). The arrow indicates defective particles of influenza virus A/California/07/09 with partially destroyed and/or deformed shells.

Download (193KB)

Copyright (c) 2024 Russian Academy of Sciences