Investigation of the behavior of dioxadet molecules in water by molecular dynamics simulation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The behaviour of dioxadet molecules in water is studied by the molecular dynamics simulation. This substance has anti-cancer properties and is used in clinical practice. However, its properties have not yet studied at the molecular level. This paper presents the first attempt of such investigation. Parametrization of dioxadet molecule was carried out using different available services: ATB, SwissParam as well as AmberTools in a standard form and with the use of additional quantum-chemical calculations. The obtained models are compared with each other. The number of hydrogen bonds of the molecule with water was calculated, the analysis of hydrated water was carried out. It was shown that the dioxadet molecules in water tend to associate. All the models obtained show similar properties, but the quantitative characteristics differ noticeably. Further research is needed to select the best model. Molecule topology files are available for use.

Full Text

Restricted Access

About the authors

E. A. Yakush

Voevodsky Institute of Chemical Kinetics and Combustion Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: nikmed@kinetics.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

A. V. Kim

Voevodsky Institute of Chemical Kinetics and Combustion Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: nikmed@kinetics.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

N. N. Medvedev

Voevodsky Institute of Chemical Kinetics and Combustion Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: nikmed@kinetics.nsc.ru
Russian Federation, Novosibirsk

References

  1. Bespalov V.G., Kireeva G.S., Belyaeva O.A. et al. // J. Chemotherapy. 2016. V. 28. № 3. P. 203; https://doi.org/10.1179/1973947815Y.0000000040
  2. Gershanovich M.L., Filov V.A., Kotova D.G. et al. // Vopr. Onkol. 1998. V. 44. №. 2. P. 216;
  3. Zhikhoreva A.A., Belashov A.V., Bespalov V.G. et al. // Biomed. Opt. Express. 2018. V. 9. №. 11. P. 5817; https://doi.org/10.1364/BOE.9.005817
  4. Fabian B., Sega M., Voloshin V.P., Medvedev N.N., Jedlovszky P. // J. Phys. Chem. B. 2017. V. 121. №. 13. P. 2814; https://doi.org/10.1021/acs.jpcb.7b00990
  5. Hummer G. // New J. Phys. 2005. V. 7. №. 1. P. 34; https://doi.org/10.1088/1367-2630/7/1/034
  6. Torrie G.M., Valleau J.P. // J. Comput. Phys. 1977. V. 23. №. 2. P. 187; https://doi.org/10.1016/0021-9991(77)90121-8
  7. Kim A.V., Shelepova E.A., Selyutina O.Y. et al. // Mol. Pharm. 2019. V. 16. №. 7. P. 3188; https://doi.org/10.1021/acs.molpharmaceut.9b00390
  8. Kim A.V., Shelepova E.A., Evseenko V.I. et al. // J. Mol. Liq. 2021. V. 344. P. 117759; https://doi.org/10.1016/j.molliq.2021.117759
  9. Zelikman M.V., Kim A.V., Medvedev N.N. // J. Struct. Chem. 2016. V. 57. № 5. P. 940–946. https://doi.org/10.1134/S0022476616050139
  10. Zelikman M.V., Kim A.V., Medvedev N.N., Selyutina O.Y., Polyakov N.E. // J. Struct. Chem. 2015. V. 56. № 1. P. 67–76. https://doi.org/10.1134/S0022476615010102
  11. https://pubchem.ncbi.nlm.nih.gov/compound/Dioxadet
  12. Malde A.K., Zuo L., Breeze M. et al. // J. Chem. Theory Comput. 2011. V. 7. № 12, P. 4026; https://doi.org/10.1021/ct200196m
  13. Zoete V., Cuendet M.A., Grosdidier A., Michielin O. // J. Comput. Chem. 2011. V. 32. № 11. P. 2359; https://doi.org/10.1002/jcc.21816
  14. Case D.A., Cheatham III T.E., Darden T. et al. // Ibid. 2005. V. 26. №. 16. P. 1668; https://doi.org/10.1002/jcc.20290
  15. Berendsen H.J.C., Postma J.P., van Gunsteren W.F., Hermans J. // Dordrecht: Springer, 1981. P. 331; https://doi.org/10.1007/978-94-015-7658-1_21
  16. Abraham M.J., Murtola T., Schulz R. et al. // SoftwareX. 2015. V. 1. P. 19; https://doi.org/10.1016/j.softx.2015.06.001
  17. Bussi G., Donadio D., Parrinello M. // J. Chem. Phys. 2007. V. 126. № 1. P. 014101; https://doi.org/10.1063/1.2408420
  18. Nosé S. // J. Chem. Phys. 1984. V. 81. №. 1. P. 511; https://doi.org/10.1063/1.447334
  19. Voloshin V.P., Medvedev N.N. // J. Struct. Chem. 2021. V. 62. № 5. P. 692–703. https://doi.org/10.1134/S002247662105005X
  20. Shelepova E.A., Ludwig R., Paschek D., Medvedev N.N. // J. Mol. Liq. 2021. V. 329. P. 115589; https://doi.org/10.1016/j.molliq.2021.115589

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of the dioxade molecule. The numbers indicate the atoms on which the largest partial charges are concentrated.

Download (50KB)
3. Fig. 2. Radial distribution function (RDF) of water molecules relative to the surfaces of the nearest atoms of the triazine ring DXT; The RDFs of all models tend to unity at large distances, as for the AmberHF model. The curves for AmberB3LYP, ATB and SwissParam are shifted down for ease of viewing.

Download (107KB)
4. Fig. 3. Time dependence of the distance between the centers of mass of two DXT molecules for different models: a - ATB, b - Amber B3LYP, c - Amber HF, d - SwissParam.

Download (191KB)
5. Fig. 4. Screenshots showing aggregates of four DXT molecules in water (water molecules not shown) arising in the ATB model.

Download (133KB)

Note

Х Международная конференция им. В.В. Воеводского “Физика и химия элементарных химических про­цессов” (сентябрь 2022, Новосибирск, Россия).


Copyright (c) 2024 Russian Academy of Sciences