Aerobic decomposition of dimethylthiourea nitrosyl iron complex in the presence of albimin and glutathione
- Authors: Kormukhina A.Y.1,2, Kusyapkulova A.B.1,2, Emel’yanova N.S.1, Pokidova O.V.1, Sanina N.A.1,2,3
-
Affiliations:
- Federal Research Center Problem of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
- Lomonosov Moscow State University
- Moscow State Regional University
- Issue: Vol 43, No 2 (2024)
- Pages: 62-72
- Section: Chemical physics of biological processes
- URL: https://vestnikugrasu.org/0207-401X/article/view/674987
- DOI: https://doi.org/10.31857/S0207401X24020078
- EDN: https://elibrary.ru/WHOAEF
- ID: 674987
Cite item
Abstract
Nitrosyl iron complexes (NICs) are natural “depots” of NO. NICs forms by the interaction of endogenous nitric oxide (NO) and non‒heme [2Fe-2S] proteins. Their synthetic analogues are promising compounds in medicines for the treatment of socially significant diseases. In this paper, the effect of bovine serum albumin (BSA) and reduced glutathione (GSH) on the decomposition of a nitrosyl iron complex with N,N′-dimethylthiourea ligands [Fe(SC(NHCH3)2)2(NO)2]BF4 (complex 1) under aerobic conditions have been investigated. In the absorption spectra complex 1 in the presence of albumin a wide band at 370–410 nm appears, which indicates the coordination of the aerobic decay product of the complex in the hydrophobic pocket of the protein with Cys34 and His39. The quenching of albumin intrinsic fluorescence during titration with complex 1 was studied by fluorescence spectroscopy. The Stern-Vollmer constant K = (2.3 ± 0.2) ∙ 105 М-1 and the Förster radius 22.4 Å were calculated. The UV-spectrum complex 1 in presence of GSH has two peaks at 312 and 363 nm, which respond glutathione binuclear NICs.
Full Text

About the authors
A. Yu. Kormukhina
Federal Research Center Problem of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences; Lomonosov Moscow State University
Author for correspondence.
Email: alex.kormukhina2015@yandex.ru
Russian Federation, Chernogolovka; Moscow
A. B. Kusyapkulova
Federal Research Center Problem of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences; Lomonosov Moscow State University
Email: alex.kormukhina2015@yandex.ru
Russian Federation, Chernogolovka; Moscow
N. S. Emel’yanova
Federal Research Center Problem of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
Email: alex.kormukhina2015@yandex.ru
Russian Federation, Chernogolovka
O. V. Pokidova
Federal Research Center Problem of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences
Email: alex.kormukhina2015@yandex.ru
Russian Federation, Chernogolovka
N. A. Sanina
Federal Research Center Problem of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences; Lomonosov Moscow State University; Moscow State Regional University
Email: alex.kormukhina2015@yandex.ru
Scientific and Educational Center “Medical Chemistry”
Russian Federation, Chernogolovka; Moscow; MytishchiReferences
- Vanin A.F. // Sorosov. Educ. J. 2001. № 11. V. 7. P. 7.
- Ignarro L.J. // Circulation Research. 2002. V. 90. № 1. P. 21.
- Ghimire K., Altmann H.M., Straub A.C. et al. // Amer. J. Physiol. Cell Physiol. 2017. V. 312. P. 254.
- Konstantinova T.S., Shevchenko T.F., Barskov I.V. et al. // Russ. J. Phys. Chem. 2021. V. 15. P. 119.
- Needleman P., Johnson JR. Eu. M. // J. Pharm. Exp. Therap. 1973. V. 184. P. 709.
- Shurshina A.S.,. Galina A.P, Kulish E.I. // Russ. J. Phys. Chem. 2022. V. 16. P. 353.
- Pectol D.C., Khan S., Chupik R.B. et al. // Mol. Pharm. 2019. V. 16. P. 3178.
- Psikha B.L., Neshev N.I., Sokolova E.M. // Russ. J. Phys. Chem. 2020. V. 15. P. 571.
- Saratovskich E.A., Sanina N.A., Martinenko V.M. // Russ. J. Phys. Chem. V. 14. 2020. P. 138.
- Chazov E.I., Rodnenkov O.V., Zorin A.V. et al. // Nitr. Ox. 2012. V. 26. P. 148.
- Sanina N.A., Shmatko N.Y., Korchagin D.V. et al. // J. Coord. Chem. 2016. V. 69. P. 812.
- Sanina N.A., Aldoshin S.M., Shmatko N.Y. et al. // Inorg. Chem. Commun. 2014. V. 49. P. 44.
- Akentieva N.P., Sanina N.A., Prichodchenko T.R. et al. // Dokl. Biochem. Biophys. 2019. V. 486. P. 238.
- Gizatullin A.R., Akentieva N.P., Sanina N.A. et al. // Dokl. Biochem. Biophys. 2018. V. 483. P. 337.
- Mumyatova V.A., Kozub G.I., Kondrat’eva T.A. et al. // Russ. Chem. Bull. 2019. V. 68. P. 1025.
- Shmatko N.Yu., Korchagin D.V., Shilov G.V. et al. // Polyhedron. 2017. V. 137.
- Akent’eva N.P., Sanina N.A., Prihodchenko T.R. et al. // Dokl. Acad. Sc. 2019. V. 486. P. 742.
- Lewandowska H., Kalinowska M., Brzoska K. et al. // Dalt Trans. 2011. V. 33. P. 8273.
- Shumaev K.B., Kosmachevskaya O.V., Timoshin A.A. et al. // Methods. Enzym. 2008. V. 436. P. 445.
- Otagiri M., Chuang V.T.G. / Albumin in Medicine. Singapore: Springer, 2016.
- Peters J.T. // All About Albumin. 1st ed. N.Y.: Acad. Press, 1995.
- Andre C., Guillaume Y.C. // Talanta. 2004. V. 63. P. 503.
- Bal W., Sokołowska M., Kurowska E. et al. // Biochim. Biophys. Acta. 2013. V. 1830. P. 5444.
- Patel S.U., Sadler P.J., Tucker A. // J. Amer. Chem. Soc. 1993. V. 115. P. 9285.
- Scott B.J., Bradwell A.R. // Clin. Chem. 1983. V. 29. P. 629.
- Boese M., Mordvintcev P.I., Vanin A.F. et al. // Biol. Chem. 1995. V. 270. P. 29244.
- Townsend D.M., Tew K.D., Tapiero H. // Biomed. Pharm. 2003. V. 57. P. 145.
- Kalinina E.V., Chernov N.N., Novichkov M.D. // Suc. Biolog. Chem. 2014. V. 54. P. 299.
- Pokidova O.V., Emel’yanova N.S., Psikha B.L. et al. // In. Chim. Acta. 2020. V. 502. P. 119369.
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09. Rev. D.01. 2013.
- Banerjee A., Sen S., Paul A. // Chem. A Europ. J. 2018. V. 24. P. 3330.
- Emel.yanova N.S., Gutsev L.G., Pokidova O.V. et al. // In. Chim. Acta. 2021. V. 524. P. 120453.
- Emel’yanova N.S., Gucev L.G., Zagainova E.A. et al. // Rus. Chem. Bull. 2022. V. 9. P. 1. Изв. РАН. 2022. T. 9. C. 1.
- Vanin A.F., Poltorakov A.P., Mikoyan V. D. et al. // Nitr. Ox. 2010. V. 23. P. 136.
- Pokidova О.V., Emel’yanova N.S., Kormukhina A. Yu. et al. // Dalt. Trans. 2022. V. 51. P. 6473.
- Pokidova О.V., Emel’yanova N.S., Psikha B.L. et al. // J. Mol. Str. 2019. V. 1192. P. 264.
- Peterman B.F., Laidler K.J. // Arch. Biochem. Biophys. 1980. V. 199. P. 158.
- Lakowicz J.R., Joseph R. Principles of Fluorescence Spectroscopy. USA: Springer, 2006.
- Forster T. // Ann. Phys. 1948. V. 437. P. 55.
- Chen Y., Barkley M.D. // Biochem. 1998. V. 37. P. 9976.
- Mahammed A., Gray H. B., Weaver J. J. et al. // Bioconj. Chem. 2004. V. 15. P. 738.
- Pokidova O.V., Luzhkov V.B., Emel’yanova N.S. et al. // Dalt. Trans. 2020. V. 49. P. 2674.
Supplementary files

Note
Х Международная конференция им. В.В. Воеводского “Физика и химия элементарных химических процессов” (сентябрь 2022, Новосибирск, Россия).