Aerobic decomposition of dimethylthiourea nitrosyl iron complex in the presence of albimin and glutathione

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Nitrosyl iron complexes (NICs) are natural “depots” of NO. NICs forms by the interaction of endogenous nitric oxide (NO) and non‒heme [2Fe-2S] proteins. Their synthetic analogues are promising compounds in medicines for the treatment of socially significant diseases. In this paper, the effect of bovine serum albumin (BSA) and reduced glutathione (GSH) on the decomposition of a nitrosyl iron complex with N,N′-dimethylthiourea ligands [Fe(SC(NHCH3)2)2(NO)2]BF4 (complex 1) under aerobic conditions have been investigated. In the absorption spectra complex 1 in the presence of albumin a wide band at 370–410 nm appears, which indicates the coordination of the aerobic decay product of the complex in the hydrophobic pocket of the protein with Cys34 and His39. The quenching of albumin intrinsic fluorescence during titration with complex 1 was studied by fluorescence spectroscopy. The Stern-Vollmer constant K = (2.3 ± 0.2) ∙ 105 М-1 and the Förster radius 22.4 Å were calculated. The UV-spectrum complex 1 in presence of GSH has two peaks at 312 and 363 nm, which respond glutathione binuclear NICs.

Full Text

Restricted Access

About the authors

A. Yu. Kormukhina

Federal Research Center Problem of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences; Lomonosov Moscow State University

Author for correspondence.
Email: alex.kormukhina2015@yandex.ru
Russian Federation, Chernogolovka; Moscow

A. B. Kusyapkulova

Federal Research Center Problem of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences; Lomonosov Moscow State University

Email: alex.kormukhina2015@yandex.ru
Russian Federation, Chernogolovka; Moscow

N. S. Emel’yanova

Federal Research Center Problem of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences

Email: alex.kormukhina2015@yandex.ru
Russian Federation, Chernogolovka

O. V. Pokidova

Federal Research Center Problem of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences

Email: alex.kormukhina2015@yandex.ru
Russian Federation, Chernogolovka

N. A. Sanina

Federal Research Center Problem of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences; Lomonosov Moscow State University; Moscow State Regional University

Email: alex.kormukhina2015@yandex.ru

Scientific and Educational Center “Medical Chemistry”

Russian Federation, Chernogolovka; Moscow; Mytishchi

References

  1. Vanin A.F. // Sorosov. Educ. J. 2001. № 11. V. 7. P. 7.
  2. Ignarro L.J. // Circulation Research. 2002. V. 90. № 1. P. 21.
  3. Ghimire K., Altmann H.M., Straub A.C. et al. // Amer. J. Physiol. Cell Physiol. 2017. V. 312. P. 254.
  4. Konstantinova T.S., Shevchenko T.F., Barskov I.V. et al. // Russ. J. Phys. Chem. 2021. V. 15. P. 119.
  5. Needleman P., Johnson JR. Eu. M. // J. Pharm. Exp. Therap. 1973. V. 184. P. 709.
  6. Shurshina A.S.,. Galina A.P, Kulish E.I. // Russ. J. Phys. Chem. 2022. V. 16. P. 353.
  7. Pectol D.C., Khan S., Chupik R.B. et al. // Mol. Pharm. 2019. V. 16. P. 3178.
  8. Psikha B.L., Neshev N.I., Sokolova E.M. // Russ. J. Phys. Chem. 2020. V. 15. P. 571.
  9. Saratovskich E.A., Sanina N.A., Martinenko V.M. // Russ. J. Phys. Chem. V. 14. 2020. P. 138.
  10. Chazov E.I., Rodnenkov O.V., Zorin A.V. et al. // Nitr. Ox. 2012. V. 26. P. 148.
  11. Sanina N.A., Shmatko N.Y., Korchagin D.V. et al. // J. Coord. Chem. 2016. V. 69. P. 812.
  12. Sanina N.A., Aldoshin S.M., Shmatko N.Y. et al. // Inorg. Chem. Commun. 2014. V. 49. P. 44.
  13. Akentieva N.P., Sanina N.A., Prichodchenko T.R. et al. // Dokl. Biochem. Biophys. 2019. V. 486. P. 238.
  14. Gizatullin A.R., Akentieva N.P., Sanina N.A. et al. // Dokl. Biochem. Biophys. 2018. V. 483. P. 337.
  15. Mumyatova V.A., Kozub G.I., Kondrat’eva T.A. et al. // Russ. Chem. Bull. 2019. V. 68. P. 1025.
  16. Shmatko N.Yu., Korchagin D.V., Shilov G.V. et al. // Polyhedron. 2017. V. 137.
  17. Akent’eva N.P., Sanina N.A., Prihodchenko T.R. et al. // Dokl. Acad. Sc. 2019. V. 486. P. 742.
  18. Lewandowska H., Kalinowska M., Brzoska K. et al. // Dalt Trans. 2011. V. 33. P. 8273.
  19. Shumaev K.B., Kosmachevskaya O.V., Timoshin A.A. et al. // Methods. Enzym. 2008. V. 436. P. 445.
  20. Otagiri M., Chuang V.T.G. / Albumin in Medicine. Singapore: Springer, 2016.
  21. Peters J.T. // All About Albumin. 1st ed. N.Y.: Acad. Press, 1995.
  22. Andre C., Guillaume Y.C. // Talanta. 2004. V. 63. P. 503.
  23. Bal W., Sokołowska M., Kurowska E. et al. // Biochim. Biophys. Acta. 2013. V. 1830. P. 5444.
  24. Patel S.U., Sadler P.J., Tucker A. // J. Amer. Chem. Soc. 1993. V. 115. P. 9285.
  25. Scott B.J., Bradwell A.R. // Clin. Chem. 1983. V. 29. P. 629.
  26. Boese M., Mordvintcev P.I., Vanin A.F. et al. // Biol. Chem. 1995. V. 270. P. 29244.
  27. Townsend D.M., Tew K.D., Tapiero H. // Biomed. Pharm. 2003. V. 57. P. 145.
  28. Kalinina E.V., Chernov N.N., Novichkov M.D. // Suc. Biolog. Chem. 2014. V. 54. P. 299.
  29. Pokidova O.V., Emel’yanova N.S., Psikha B.L. et al. // In. Chim. Acta. 2020. V. 502. P. 119369.
  30. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09. Rev. D.01. 2013.
  31. Banerjee A., Sen S., Paul A. // Chem. A Europ. J. 2018. V. 24. P. 3330.
  32. Emel.yanova N.S., Gutsev L.G., Pokidova O.V. et al. // In. Chim. Acta. 2021. V. 524. P. 120453.
  33. Emel’yanova N.S., Gucev L.G., Zagainova E.A. et al. // Rus. Chem. Bull. 2022. V. 9. P. 1. Изв. РАН. 2022. T. 9. C. 1.
  34. Vanin A.F., Poltorakov A.P., Mikoyan V. D. et al. // Nitr. Ox. 2010. V. 23. P. 136.
  35. Pokidova О.V., Emel’yanova N.S., Kormukhina A. Yu. et al. // Dalt. Trans. 2022. V. 51. P. 6473.
  36. Pokidova О.V., Emel’yanova N.S., Psikha B.L. et al. // J. Mol. Str. 2019. V. 1192. P. 264.
  37. Peterman B.F., Laidler K.J. // Arch. Biochem. Biophys. 1980. V. 199. P. 158.
  38. Lakowicz J.R., Joseph R. Principles of Fluorescence Spectroscopy. USA: Springer, 2006.
  39. Forster T. // Ann. Phys. 1948. V. 437. P. 55.
  40. Chen Y., Barkley M.D. // Biochem. 1998. V. 37. P. 9976.
  41. Mahammed A., Gray H. B., Weaver J. J. et al. // Bioconj. Chem. 2004. V. 15. P. 738.
  42. Pokidova O.V., Luzhkov V.B., Emel’yanova N.S. et al. // Dalt. Trans. 2020. V. 49. P. 2674.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Change in the absorption spectra of complex 1 in Tris-HCl buffer. Reaction conditions: concentration of complex 1 - 2 ∙ 10–4 M, temperature - 23 °C, solvent - 0.05 M Tris-HCl buffer pH 7.0. The inset shows the kinetic curve of the decomposition of complex 1 for this experiment. The rate constant of this process was (3.7 ± 0.4) ∙ 10–4 s–1.

Download (140KB)
3. Fig. 2. TDDFT spectra of the oxidation products of complex 1: A, B - products of the addition of an oxygen molecule to the NO ligand; C, D are the products of the addition of oxygen to the iron atom.

Download (231KB)
4. Fig. 3. Changes in the absorption spectra of complex 1 in the presence of BSA. Reaction conditions: complex concentration 1 - 2 ∙ 10-4 M, BSA concentration - 2 ∙ 10-4 M, temperature - 23 °C, solvent - 0.05 M Tris-HCl buffer with pH 7.0. The rate constants of this process were (1.1 ± 0.1) ∙ 10–3 s–1 and (5.7 ± 0.6) ∙ 10–5 s–1.

Download (154KB)
5. Fig. 4. Changes in the absorption spectra of complex 1 in the presence of GSH. Reaction conditions: concentration of complex 1 — 0.8 ∙ 10–4 M, GSH concentration — 3.2 ∙ 10–4 M, temperature — 23 °C, solvent — 0.05 M Tris-HCl buffer with pH 7.0. The rate constant of the initial process was k = (5.3 ± 0.6) ∙ 10–4 s–1.

Download (189KB)
6. Fig. 5. Effect of complex 1 on the fluorescence spectra of BSA. Conditions: initial concentrations of the complex 1 - 0; 0.5 ‧ 10–6; 1 ‧ 10–6; 1.5 ‧ 10–6; 2 ‧ 10–6; 2.47 ‧ 10–6; 2.95 ‧ 10–6; 3.43 ‧ 10–6; 3.91 ‧ 10–6; 4.38 ‧ 10–6; 4.86 ∙ 10–6 M, BSA –1 ∙ 10–6 M, lex = 290 nm, 0.05 M Tris-HCl buffer pH 7.0, temperature – 23 °C. The inset shows the Stern–Volmer curve of the BSA–complex 1 system.

Download (150KB)

Note

Х Международная конференция им. В.В. Воеводского “Физика и химия элементарных химических про­цессов” (сентябрь 2022, Новосибирск, Россия).


Copyright (c) 2024 Russian Academy of Sciences