Synthesis of HTSP Y11-xFexBa2Cu3Oy by Sol-Gel and Solid-Phase Methods
- Authors: Pigalskiy K.S.1, Vishnev A.A.1, Baldin E.D.1, Trakhtenberg L.I.1,2
-
Affiliations:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Lomonosov Moscow State University
- Issue: Vol 43, No 3 (2024)
- Pages: 122-124
- Section: Short Communication
- URL: https://vestnikugrasu.org/0207-401X/article/view/674980
- DOI: https://doi.org/10.31857/S0207401X24030136
- EDN: https://elibrary.ru/VFNFRC
- ID: 674980
Cite item
Abstract
A modified version of using of the sol-gel process at the initial stage of the synthesis of a high-temperature superconductor (HTSC) Y1-xFexBa2Cu3Oy with low Fe doping is proposed. The properties of samples obtained by sol-gel and solid-state synthesis have been compared. It has been shown that a more uniform distribution of the dopant throughout the volume of the sol-gel samples makes it possible to obtain materials with improved microstructural and performance characteristics.
Keywords
Full Text

About the authors
K. S. Pigalskiy
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: baldin.ed16@physics.msu.ru
Russian Federation, Moscow
A. A. Vishnev
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: baldin.ed16@physics.msu.ru
Russian Federation, Moscow
E. D. Baldin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Author for correspondence.
Email: baldin.ed16@physics.msu.ru
Russian Federation, Moscow
L. I. Trakhtenberg
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Lomonosov Moscow State University
Email: baldin.ed16@physics.msu.ru
Russian Federation, Moscow; Moscow
References
- Shlyakhtina A.V., Lyskov N.V., Shchegolikhin A. N. et al. // Ceram. Intern. 2020. V. 46. P. 17383.
- Ma J., Chen K., Li C. et al. // Ibid. 2021. V. 47. Issue 17. P. 24348.
- Politova E.D., Kaleva G.M., Mosunov A.V. et al. // Ferroelectr. 2020. V. 560. P. 38.
- Politova E.D., Kaleva G.M., Ivanov S.A. et al. // Ibid. 2023. V. 605. P. 73.
- Ikim M.I., Spiridonova E.Yu., Gromov V.F. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 774.
- Dokhlikova N.V., Gatin A.K., Sarvadiy S.Yu. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 772.
- Gerasimov G.N., Gromov V.F., Ikim M.I., Trakhtenberg L.I. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 1072.
- Gromov V.F., Ikim M.I., Gerasimov G.N., Trakhtenberg L.I. //Russ. J. Phys. Chem. B. 2021. V. 15. P. 1084.
- Pigalskiy K.S., Vishnev A.A., Efi mov N.N., Shabatin A.V., Trakhtenberg L.I. // Curr. Appl. Phys. 2022. V. 41. P. 116.
- Liu R.S., Wang W.N., Chang C.T., Wu P.T. // Jap. J. of Appl. Phys. 1989. V. 28. P. L2155.
- Raittila J., Huhtinen H., Paturi P.,. Stepanov Yu.P // Physica C. 2002. V. 371. P. 90.
- Mamsurova L.G., Trusevich N.G., Vishnev A.A. et al. // Russ. J. Phys. Chem. B. 2020. V. 14. P. 986.
Supplementary files
