Investigation of the Influence of UV Radiation on Compositions of Polylactide with Graphite Nanoplates
- Authors: Gasymov M.M.1, Rogovina S.Z.1, Kuznetsova O.P.1, Perepelitsyna E.O.2, Shevchenko V.G.1,3, Lomakin S.M.1,4, Berlin A.A.1
-
Affiliations:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Federal State Research Center for Chemical Physics and Medical Chemistry, Russian Academy of Sciences
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- Issue: Vol 43, No 3 (2024)
- Pages: 112-121
- Section: Chemical physics of polymeric materials
- URL: https://vestnikugrasu.org/0207-401X/article/view/674979
- DOI: https://doi.org/10.31857/S0207401X24030121
- EDN: https://elibrary.ru/VFNIAA
- ID: 674979
Cite item
Abstract
Composites of polyether polylactide (PLA) synthesized from natural raw materials with graphite nanoplates (GNP), which represent a new type of composite materials based on biodegradable polymers, were obtained by solid-phase method under the action of shear deformations. The porosity of composites was evaluated and their electrical and mechanical properties were studied. The effect of UV radiation on the molecular weight and molecular weight distribution of PLA in PLA-GNP composites of different compositions was investigated using the method of excision chromatography (EC), and the effect of the GNP nanofiller content on the change of their mechanical characteristics in the process of radiation was shown.
Full Text

About the authors
M. M. Gasymov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: S.Rogovina@mail.ru
Russian Federation, Moscow
S. Z. Rogovina
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Author for correspondence.
Email: S.Rogovina@mail.ru
Russian Federation, Moscow
O. P. Kuznetsova
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: S.Rogovina@mail.ru
Russian Federation, Moscow
E. O. Perepelitsyna
Federal State Research Center for Chemical Physics and Medical Chemistry, Russian Academy of Sciences
Email: S.Rogovina@mail.ru
Russian Federation, Chernogolovka
V. G. Shevchenko
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
Email: S.Rogovina@mail.ru
Russian Federation, Moscow; Moscow
S. M. Lomakin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: S.Rogovina@mail.ru
Russian Federation, Moscow; Moscow
A. A. Berlin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: S.Rogovina@mail.ru
Russian Federation, Moscow
References
- Chieng B.W., Ibrahim N.A., Yunus W.M.Z.W. et al. // Polymer. 2014. V. 6. P. 2232; https://doi.org/10.3390/polym6082232
- Papageorgiou D.J., Kinloch I.A., Young R.J. // Prog. Mater. Sci. 2017. V. 90. P. 75; https://doi.org/10.1016/j.pmatsci.2017.07.004
- Jem K.J., van der Pol J.F., de Vos S. Microbial Lactic Acid, Its Polymer Poly (lactic acid) and their industrial Applications. Plastics from Bacteria: Natural Functions and Applications. Gorinchem, The Netherlands: Royal Society of Chemistry, 2010; https://doi.org/10.1007/978-3-642-03287-5_13
- Garlotta D.A. // J. Polym. Environ. 2001. V. 19. Р. 63; https://doi.org/10.1023/A:1020200822435
- Jimenez A., Peltzer M., Ruseckaite R. Poly (lactic acid) Science and Technology Processing, Properties, Additives and Applications. Cambridge: Royal Society of Chemistry, 2015; https://doi.org/10.1039/9781782624806-FP005
- Zhang M., Ding X., Zhan Y., Wang Y., Wang X. // J. Hazard. Mater. 2020. V. 384. P. 121260; https://doi.org/10.1016/j.jhazmat.2019.121260
- Tawiah B., Bin Y., Richard K.K. Y. et al. // Carbon. 2019. V. 150. P. 8; https://doi.org/10.1016/j.carbon.2019.05.002
- Rogovina S.Z., Gasymov M.M., Lomakin S.M., Kuznetsova O.P. et al. // Mech. Compos. Mater. 2023. V. 58. P. 845; https://doi.org/10.1007/s11029-023-10073-2
- Rogovina S.Z., Lomakin S.M., Usachev S.V. et al. // Polym. Cryst. 2022. V. 2022. P. 1; https://doi.org/10.1155/2022/4367582
- Hideto T., Hiroaki S., Yoshihiro S. // J. Polym. Environ. 2012. V. 20. P. 706; https://doi.org/10.1007/s10924-012-0424-7
- Angelin T.S., Ananthi V., Abhispa B., Nallathambi S. et al. // Int. J. Biol. Macromol. 2023. V. 234. P. 123703; https://doi.org/10.1016/j.ijbiomac.2023.123703
- Olewnik-Kruszkowska E., Koter I., Skopińska-Wiśniewska J. et al. // J. Photochem. Photobiol. A. Chem. 2015. V. 311. P. 114; 10.1016/j.jphotochem.2015.06.029' target='_blank'>http://dx.doi.org/doi: 10.1016/j.jphotochem.2015.06.029
- Smykovskaya R.S., Kuznetsova O.P., Medintseva T.I. et al. // Russ. J. Phys. Chem. 2022. V. 41. P. 1.
- Sasov A., Van Dyck D. // J. Microscopy. 1998. V. 191. P. 151; https://doi.org/10.5772/32264
- Medintseva T.I., Sergeev A.I., Shilkina N.G. et al. // Russ. J. Phys. Chem. 2023. V. 42. P. 61; https://doi.org/10.31857/S0207401X23050096
- Rogovina S.Z., Lomakin S.M., Usachev S.V. et al. // Appl. Sci. 2023. V. 13. P. 3920; https://doi.org/10.3390/app13063920
- Rogovina S.Z., Lomakin S.M., Usachev S.V. et al. // J. Appl. Polym. Sci. 2019. V. 136. P. 47598; https://doi.org/10.1002/app.47598
- Jonscher A.K. // Nature. 1977. V. 267. P. 673; https://doi.org/10.1038/267673a0
- Rogovina S.Z., Lomakin S.M., Gasymov M.M. et al. // Polym. Sci. Ser. D. 2022. V. 6. P. 11; https://doi.org/10.31044/1994-6260-2022-0-6-11-19
Supplementary files
