Investigation of the Influence of UV Radiation on Compositions of Polylactide with Graphite Nanoplates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Composites of polyether polylactide (PLA) synthesized from natural raw materials with graphite nanoplates (GNP), which represent a new type of composite materials based on biodegradable polymers, were obtained by solid-phase method under the action of shear deformations. The porosity of composites was evaluated and their electrical and mechanical properties were studied. The effect of UV radiation on the molecular weight and molecular weight distribution of PLA in PLA-GNP composites of different compositions was investigated using the method of excision chromatography (EC), and the effect of the GNP nanofiller content on the change of their mechanical characteristics in the process of radiation was shown.

Full Text

Restricted Access

About the authors

M. M. Gasymov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: S.Rogovina@mail.ru
Russian Federation, Moscow

S. Z. Rogovina

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: S.Rogovina@mail.ru
Russian Federation, Moscow

O. P. Kuznetsova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: S.Rogovina@mail.ru
Russian Federation, Moscow

E. O. Perepelitsyna

Federal State Research Center for Chemical Physics and Medical Chemistry, Russian Academy of Sciences

Email: S.Rogovina@mail.ru
Russian Federation, Chernogolovka

V. G. Shevchenko

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences

Email: S.Rogovina@mail.ru
Russian Federation, Moscow; Moscow

S. M. Lomakin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: S.Rogovina@mail.ru
Russian Federation, Moscow; Moscow

A. A. Berlin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: S.Rogovina@mail.ru
Russian Federation, Moscow

References

  1. Chieng B.W., Ibrahim N.A., Yunus W.M.Z.W. et al. // Polymer. 2014. V. 6. P. 2232; https://doi.org/10.3390/polym6082232
  2. Papageorgiou D.J., Kinloch I.A., Young R.J. // Prog. Mater. Sci. 2017. V. 90. P. 75; https://doi.org/10.1016/j.pmatsci.2017.07.004
  3. Jem K.J., van der Pol J.F., de Vos S. Microbial Lactic Acid, Its Polymer Poly (lactic acid) and their industrial Applications. Plastics from Bacteria: Natural Functions and Applications. Gorinchem, The Netherlands: Royal Society of Chemistry, 2010; https://doi.org/10.1007/978-3-642-03287-5_13
  4. Garlotta D.A. // J. Polym. Environ. 2001. V. 19. Р. 63; https://doi.org/10.1023/A:1020200822435
  5. Jimenez A., Peltzer M., Ruseckaite R. Poly (lactic acid) Science and Technology Processing, Properties, Additives and Applications. Cambridge: Royal Society of Chemistry, 2015; https://doi.org/10.1039/9781782624806-FP005
  6. Zhang M., Ding X., Zhan Y., Wang Y., Wang X. // J. Hazard. Mater. 2020. V. 384. P. 121260; https://doi.org/10.1016/j.jhazmat.2019.121260
  7. Tawiah B., Bin Y., Richard K.K. Y. et al. // Carbon. 2019. V. 150. P. 8; https://doi.org/10.1016/j.carbon.2019.05.002
  8. Rogovina S.Z., Gasymov M.M., Lomakin S.M., Kuznetsova O.P. et al. // Mech. Compos. Mater. 2023. V. 58. P. 845; https://doi.org/10.1007/s11029-023-10073-2
  9. Rogovina S.Z., Lomakin S.M., Usachev S.V. et al. // Polym. Cryst. 2022. V. 2022. P. 1; https://doi.org/10.1155/2022/4367582
  10. Hideto T., Hiroaki S., Yoshihiro S. // J. Polym. Environ. 2012. V. 20. P. 706; https://doi.org/10.1007/s10924-012-0424-7
  11. Angelin T.S., Ananthi V., Abhispa B., Nallathambi S. et al. // Int. J. Biol. Macromol. 2023. V. 234. P. 123703; https://doi.org/10.1016/j.ijbiomac.2023.123703
  12. Olewnik-Kruszkowska E., Koter I., Skopińska-Wiśniewska J. et al. // J. Photochem. Photobiol. A. Chem. 2015. V. 311. P. 114; 10.1016/j.jphotochem.2015.06.029' target='_blank'>http://dx.doi.org/doi: 10.1016/j.jphotochem.2015.06.029
  13. Smykovskaya R.S., Kuznetsova O.P., Medintseva T.I. et al. // Russ. J. Phys. Chem. 2022. V. 41. P. 1.
  14. Sasov A., Van Dyck D. // J. Microscopy. 1998. V. 191. P. 151; https://doi.org/10.5772/32264
  15. Medintseva T.I., Sergeev A.I., Shilkina N.G. et al. // Russ. J. Phys. Chem. 2023. V. 42. P. 61; https://doi.org/10.31857/S0207401X23050096
  16. Rogovina S.Z., Lomakin S.M., Usachev S.V. et al. // Appl. Sci. 2023. V. 13. P. 3920; https://doi.org/10.3390/app13063920
  17. Rogovina S.Z., Lomakin S.M., Usachev S.V. et al. // J. Appl. Polym. Sci. 2019. V. 136. P. 47598; https://doi.org/10.1002/app.47598
  18. Jonscher A.K. // Nature. 1977. V. 267. P. 673; https://doi.org/10.1038/267673a0
  19. Rogovina S.Z., Lomakin S.M., Gasymov M.M. et al. // Polym. Sci. Ser. D. 2022. V. 6. P. 11; https://doi.org/10.31044/1994-6260-2022-0-6-11-19

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of dielectric permittivity of ′ compositions on frequency f at NPG concentrations of 0.1 (1), 0.25 (2), 1 (3) and 5 wt. % (4).

Download (64KB)
3. Fig. 2. Dependence of conductivity of ac compositions on frequency f at NPG concentrations of 0.1 (1), 0.25 (2), 1 (3) and 5 wt. % (4).

Download (84KB)
4. Fig. 3. Frequency dependence f of the imaginary part of the electric modulus M ″при of NPG concentrations of 0.1 (1), 0.25 (2), 1 (3), and 5 wt% (4).

Download (76KB)
5. Fig. 4. MMR curves of PLA as a function of UV irradiation time: 1 - 0 h, 2 - 3 h, 3 - 24 h.

Download (65KB)
6. Fig. 5. a - MMR curves of PLA-based compositions (1) containing 0.1 (2), 0.25 (3), 1 (4) and 5 wt. % (5) of NPG without UV irradiation; b - MMR curves of PLA-based compositions (1) containing 0. 1 (2), 0.25 (3), 1 (4) and 5 wt. % (5) of NPG under UV irradiation for 3 h; c - MMR curves of PLA-based compositions (1) containing 0.1 (2), 0.25 (3), 1 (4) and 5 wt. % (5) of NPG under UV irradiation for 24 h.

Download (150KB)
7. Fig. 6. Effect of UV-irradiation time on Mw of initial PLA (1) and PLA in compositions with NPG of different composition. NPG content: 0.1 (2), 0.25 (3), 1 (4), 5 wt. % (5).

Download (61KB)
8. Fig. 7. a - Dependence of modulus of elasticity E of compositions of initial PLA (1) and PLA-NPG compositions with NPG content 0.1 (2), 0.25 (3), 1 (4) and 5 wt. % (5) on UV-irradiation time; b - Dependence of ultimate strength σp of compositions of initial PLA (1) and PLA-NPG compositions with NPG content 0. 1 (2), 0.25 (3), 1 (4), 5 wt. % (5) as a function of UV-irradiation time; c - dependence of elongation at break р of compositions of initial PLA (1) and PLA-NPG compositions with NPG content of 0.1 (2), 0.25 (3), 1 (4), 5 wt. % (5) as a function of UV-irradiation time.

Download (200KB)

Copyright (c) 2024 Russian Academy of Sciences