The Impact of Water on Polylactide – Polybutylene Adipinate Terephthalate Blends
- Authors: Selezneva L.D.1,2, Podzorova M.V.1,2, Tertyshnaya Y.V.1,2, Romanov R.R.2, Popov A.A.1,2
-
Affiliations:
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- Plekhanov Russian University of Economics
- Issue: Vol 43, No 3 (2024)
- Pages: 103-111
- Section: Chemical physics of polymeric materials
- URL: https://vestnikugrasu.org/0207-401X/article/view/674978
- DOI: https://doi.org/10.31857/S0207401X24030116
- EDN: https://elibrary.ru/VFPQFC
- ID: 674978
Cite item
Abstract
Mixing in the melt followed by pressing, blends of polylactide — polybutylene adipate terephthalate of various compositions were obtained. The content of polybutylene adipate terephthalate in blends was 10, 20 and 30 wt. %. The effect of water on film samples at a temperature of 22 ± 2°C for 270 days was studied. After exposure to water, a change in morphology was detected: turbidity of the samples and the appearance of defects. The thermophysical characteristics before and after hydrolytic degradation were determined by differential scanning calorimetry. A decrease in the cold crystallization temperature in pure polylactide and with a low content of polybutylene adipate terephthalate, and the disappearance of the cold crystallization peak at a content of 20 and 30 wt. % of polybutylene adipate terephthalate were shown. The degree of crystallinity of polylactide after exposure to water tended to increase. Changes in the chemical structure of mixed samples were monitored by IR spectroscopy.
Full Text

About the authors
L. D. Selezneva
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Plekhanov Russian University of Economics
Author for correspondence.
Email: mariapdz@mail.ru
Russian Federation, Moscow; Moscow
M. V. Podzorova
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Plekhanov Russian University of Economics
Email: mariapdz@mail.ru
Russian Federation, Moscow; Moscow
Yu. V. Tertyshnaya
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Plekhanov Russian University of Economics
Email: mariapdz@mail.ru
Russian Federation, Moscow; Moscow
R. R. Romanov
Plekhanov Russian University of Economics
Email: mariapdz@mail.ru
Russian Federation, Moscow
A. A. Popov
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Plekhanov Russian University of Economics
Email: mariapdz@mail.ru
Russian Federation, Moscow; Moscow
References
- Tertyshnaya Y.V., Podzorova M.V. // 2021. V. 94(5). P. 639–646; https://doi.org/10.1134/S1070427221050128
- Zhou Q., Xanthos M. // Polym. Eng. Sci. 2010. V. 50. № 2. P. 320e330; https://doi.org/10.1002/pen.21520
- Tertyshnaya Y.V., Podzorova M.V., Khramkova A. // Russ. J. Phys. Chem B. 2023. V. 17(1). P. 163–170; https://doi.org/10.1134/S1990793123010098
- Olewnik-Kruszkowska E. // Polym. Degrad. Stab. 2016. V. 129. P. 87; https://doi.org/10.1016/j.polymdegradstab.2016.04.009
- Scaff aro R., Lopresti F., Botta L. // Eur. Polym. J. 2017. Vol. 96. P. 266; https://doi.org/10.1016/j.eurpolymj.2017.09.016
- Elsawya M.A., Kimc K.-H., Parkc J.-W., Deepb A. // Renew.Sust. Energ. Rev. 2017. V. 79. P. 1346; https://doi.org/10.1016/j.rser.2017.05.143
- Rapacz-Kmita A., Stodolak-Zych E., Szaraniec B., Gajek M., Dudek P. // Mater. Lett. 2015. V. 146. P. 73; https://doi.org/10.1515/adms-2016-0002
- Karpova S.G., Tertyshnaya Y.V., Podzorova M.V., Popov A.A. // Polym Sci Ser A. 2021. V. 63. P. 515;
- Varyan I.A., Kolesnikova N.N., Popov A.A. // Russ. J. Phys. Chem В. 2021. V. 15(6). P. 1041–1045; https://doi.org/10.1134/S1990793121060257
- Kij chavengkul T., Auras R., Rubino M. et al. // Polym. Degrad. Stab. 2010. V. 95. P. 2641; https://doi.org/10.1016/j.polymdegradstab.2010.07.018
- Zhang M., Jia H., Weng Y., Lia C. // Int. Biodeterior Biodegradation. 2019. V. 145. P. 104817; https://doi.org/10.1016/j.ibiod.2019.104817
- Nofar M., Heuzey M.C., Carreau P.J., Kamal M.R., Randall J. // J. Rheol. 2016. V. 60. P. 637; https://doi.org/10.1122/1.4953446
- Jian J., Xiangbin Z., Xianbo H. // Adv. Ind. Eng. Polym. Res. 2020. V. 3. № 1. P. 19; 10.1016/j.aiepr.2020.01.001' target='_blank'>https://doi: 10.1016/j.aiepr.2020.01.001
- Meaurio E., Zuza E., Sarasua J.R. // Macromolecules 2005. V. 38. № 22. P. 9221; https://doi.org/10.1021/ma051591m
- Kumara P.H.S., Nagasawa N., Yagi T., Tamada M. // J. Appl. Polym. Sci. 2008. V. 109. № 5. P. 3321; https://doi.org/10.1002/app.28402
- Zhao X., Hu H., Wang X. et al. // RSC Adv. 2020. V. 10. № 22. P. 13316; https://doi.org/10.1039/D0RA01801E
- Boudaoud N., Benali S., Mincheva R. et al. // Polym Int. 2018. V. 67. № 10. P. 1393; https://doi.org/10.1002/pi.5659
- Hocker S.J., Kim W.T., Schniepp H.C., Kranbuehl D.E. // Polymer. 2018. V. 158. P. 72; https://doi.org/10.1016/j.polymer.2018.10.031
- Bardin A., Gac P.Y. Le, Cérantola S. et al. // Polym. Degrad. Stab. 2020. V. 171. P. 109002; https://doi.org/10.1016/j.polymdegradstab.2019.109002
- Gorassi G., Pantani R. // Adv. Polym. Sci. 2016. P. 119; https://doi.org/10.1007/12_2016_12
- Tertyshnaya Y.V., Podzorova M.V., Varyan I.A. et al. // Polymers 2023. V. 15. P. 1029; https://doi.org/10.3390/polym15041029
- Kale B.G., Auras R., Singh S.P. // Packag. Technol. Sci. 2007. V. 20. P. 49; https://doi.org/10.1002/pts.742
Supplementary files
