Structural features of polylactide and natural rubber films produced by solution casting

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Composite film samples of polylactide-natural rubber with a rubber content of 5, 10 and 15 wt. % were obtained by the solution method. The study of morphology showed the presence of rubber inclusions in the form of drops in the polylactide matrix. Thermophysical characteristics were determined by differential scanning calorimetry. It was determined that when rubber was added, the peak of cold crystallization of polylactide disappears on melting thermograms, the melting temperature decreases by 1–4°C compared to 100% polylactide. The structure of the obtained compositions was studied by nuclear magnetic resonance, electron paramagnetic resonance, and X-ray diffraction. The diffraction patterns of the samples contain reflections characteristic of the crystalline α-form of polylactide.

Full Text

Restricted Access

About the authors

Yu. V. Tertyshnaya

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences; Plekhanov Russian University of Economics

Author for correspondence.
Email: terj@rambler.ru
Russian Federation, Moscow; Moscow

M. V. Podzorova

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences; Plekhanov Russian University of Economics

Email: terj@rambler.ru
Russian Federation, Moscow; Moscow

S. G. Karpova

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

Email: terj@rambler.ru
Russian Federation, Moscow

A. V. Krivandin

Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

Email: terj@rambler.ru
Russian Federation, Moscow

References

  1. Yu. V. Tertyshnaya, A. V. Khvatov, A. A. Popov, Russ. J. Phys. Chem. B 16 (1), 162 (2022). https://doi.org/10.1134/S1990793122010304
  2. S. Rogovina, L. Zhorina, A. Gatin, et al., Polym. 12, 1088 (2020). https://doi.org/10.3390/polym12051088
  3. I. A. Var’yan, N. N. Kolesnikova, A. A. Popov, Russ. J. Phys. Chem. B 15 (6), 1041 (2021). https://doi.org/10.1134/S1990793121060257
  4. C. Zhang, W. Wang, Y. Huang, et al., Mater. Design. 45, 198 (2013). https://doi.org/10.1016/j.matdes.2012.09.024
  5. W-L. Sia, W-Q. Yuana, Y-D. Lia, et al., Polym. Test. 65, 249 (2018). https://doi.org/10.1016/j.polymertesting.2017.11.030
  6. S. Rogovina, K.V. Aleksanyan, L. V. Vladimirov, et al., Russ. J. Phys. Chem. B 13 (5), 812 (2019). https://doi.org/10.1134/S1990793119050099
  7. X. Lan, X. Li, Z. Liu, et al., J. Macromol. Sci., Pure Appl. Chem. 50, 861 (2013).
  8. Y. B. Tee, R. A. Talib, K. Abdan, et al., Agric. Agric. Sci. Proc. 2, 289 (2014). https://doi.org/10.1016/j.aaspro.2014.11.041
  9. N. F. Alias, H. Ismail, Polym.-Plast. Technol. Mater. 58, 1399 (2019). https://doi.org/10.1080/25740881.2018.1563118
  10. A. Ali Shah, F. Hasan, Z. Shah, et al., Int. Biodeterior. Biodegrad, 83, 145 (2013). https://doi.org/10.1016/j.ibiod.2013.05.004
  11. B. Suksut, C. Deeprasertkul, J. Polym. Environ. 19, 288 (2010). https://doi.org/10.1007/s10924-010-0278-9
  12. S. Ishida, R. Nagasaki, K. Chino K., et al., J. Appl. Polym. Sci. 113, 558 (2009). https://doi.org/10.1002/app.30134
  13. N. Bitinis, R. Verdejo, P. Cassagnau, et al., Mater. Chem. Phys. 129, 823 (2011). https://doi.org/10.1016/j.matchemphys.2011.05.016
  14. D. Garlotta, J. Polym. Environ. 9, 63 (2001). https://doi.org/10.1023/A:1020200822435
  15. A. A. Ol’hov, M. A. Gol’dshtrah, L. S. Shibryeva, et al., Chem. Sustainable Developm. 24 (5), 633 (2016).
  16. X. Zhou, J. C. Feng, J. J. Yi, et al., Mater. Design. 49, 502 (2013). https://doi.org/10.1016/j.matdes.2013.01.069
  17. R. Auras, B. Harte, S. Selke, Macromol. Biosci. 4, 835 (2004). https://doi.org/10.1002.MABI.200400043
  18. A. V. Krivandin, A. B. Solov’еva, N. N. Glagolev, et al., Polym. 44, 5789 (2003). https://doi.org/10.1016/S0032-3861(03)00588-3
  19. O. V. Kazarina, A. G. Morozova, I. L. Fedyshkin, Polym. Sci. 63 (2), 83 (2021). https://doi.org/10.1134/S1560090421020056
  20. Y. Tertyshnaya, S. Karpova, M. Moskovskiy M., et al., Polym. 13, 2232. (2021). https://doi.org/10.3390/polym13142232
  21. V. N. Kuleznev Mixtures of polymers, Moscow, Chemistry, 304 p. (1980)
  22. Yu. V. Tertyshnaya, S. G. Karpova, M. V. Podzorova, Russ. J. Phys. Chem. B. 15 (5), 854 (2021). https://doi.org/10.1134/S1990793121050092
  23. L. Zhang, G. Zhao, G. Wang, Polym. 13, 3280 (2021). https://doi.org/10.3390/polym13193280
  24. Yu. V. Tertyshnaya, A.V. Krivandin, O. V. Shatalova, Russ. J. Phys. Chem. B. 17 (1), 171 (2023). https://doi.org/10.1134/S1990793123010128
  25. Yu. V. Tertyshnaya, S.G. Karpova, O.V. Shatalova, et al., Polym. Sci. А. 58 (1), 50 (2016). https://doi.org/10.1134/S0965545X16010119
  26. H. Wang, J. Zhang, K.Tashiro, Macromolec. 50, 3285 (2017).
  27. L. Cartier, T. Okihara, Ikada Y., Tsuji H., Puiggali J., Lotz B. Polym. 41, 8909. (2000)
  28. C. Xu, D. Yuan, L. Fu, et al., Polym. Test 37, 94 (2014). https://doi.org/10.1016/j.polymertesting.2014.05.005

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. 1H-NMR spectra of PLA (a) and 90PLA/10NK (b) samples.

Download (119KB)
3. Fig. 2. EPR spectra of PLA/NC samples with NC content of 0 (1), 5 (2), 10 (3) and 15 (4) wt.%.

Download (89KB)
4. Fig. 3. Melting thermograms of PLA/NC samples with NC content of 0 (1), 5 (2), 10 (3) and 15 (4) wt.%.

Download (73KB)
5. Fig. 4. Diffraction patterns of PLA/NC film composites with NC content of 0 (1), 5 (2), 10 (3) and 15 (4) wt.%. Transmission measurement.

Download (101KB)
6. Fig. 5. Micrographs of PLA/NC film composites with NC content of 0 (a), 5 (b), 10 (c) and 15 (d) wt.%.

Download (613KB)

Copyright (c) 2024 Russian Academy of Sciences