Improvement of morphophysiological parameters of pepper after the seed pre-sowing treatment with zinc nanoparticles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Advanced nanotechnologies allow synthesizing nanoparticles (NPs) with given physical and chemical properties providing an opportunity to study the effects and mechanisms of NPs influence on plants in order to improve their productivity. In this study, Zn NPs introduced in the polymer coating were used as a preparation for pepper seeds pre-sowing treatment. It was found that Zn NPs in concentrations of 10–5% and 10–6% in polymers accelerated plant growth and led to a significant increase in the number of leaves and buds, root mass volume being increased by an average of 10–30% compared to the control. After seed treatment with 10–6% Zn NPs the increase of proline content in plant leaves grew by 58% (p ≤ 0.05), protein content by 20% (p ≤ 0.05); treatment of seeds with Zn HPs at 10–5% concentration led to sugar content enlargement by 36% (p ≤ 0.05), chlorophyll by 52% (p ≤ 0.05) as compared with control.

Full Text

Restricted Access

About the authors

I. P. Olkhovskaya

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: nnglu@mail.ru
Russian Federation, Moscow

I. I. Krokhmal

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; State Autonomous Cultural Institution of the City of Moscow “Zaryadye Park”

Email: nnglu@mail.ru
Russian Federation, Moscow; Moscow

N. N. Glushchenko

Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Author for correspondence.
Email: nnglu@mail.ru
Russian Federation, Moscow

References

  1. K.S. Siddiqi, A. Husen, Crit. Rev. Biotechnol. 42 (7), 973 (2022). https://doi.org/10.1080/07388551.2021.1975091
  2. U. Aqeel, T. Aftab, M.M.A. Khan, et al., Chemosphere 291 (2022). https://doi.org/10.1016/j.chemosphere.2021.132672
  3. I. G. Kalinina, V. B. Ivanov, S. A. Semenov, Russ. J. Phys. Chem. B 15 (3), 506 (2021).
  4. G. De la Rosa, M. L. Lopez-Moreno de Haro, et al., Pure Appl. Chem. 85, 2161 (2013). https://doi.org/10.1351/pac-con-12-09-05
  5. D. S. Meena, H. M. Jayadeva, C. Gautam, et al., Int. J. Plant Soil Sci. 16, ١ (2017). https://doi.org/10.9734/ijpss/2017/33687
  6. M. Taheri, H. A. Qarache, A. A Qarache, et al., STEM Fellowship J. 1, 17 (2016). https://doi.org/10.17975/sfj-2015-011
  7. A. R. Sofy, M. R. Sofy, A. A. Hmed, et al., Molecules 26 (5), 1337 (2021). https://doi.org/10.3390/molecules26051337
  8. H. Yasmin, J. Mazher, A. Azmat, et al., Ecotoxicol. Environ. Saf. 218, 112 (2021). https://doi.org/10.1016/j.ecoenv.2021.112262
  9. M. Faizan, J.A. Bhat, C. Chen, et al., Plant Physiol. Biochem. 161, 122 (2021). https://doi.org/10.1016/j.plaphy.2021.02.002
  10. M. V. Bazunova, R. A. Mustakimov, E. I. Kulish, Russ. J. Phys. Chem. B 15 (5), 888 (2021).
  11. M. S. Sheteiwy, H. Shaghaleh, Y. A. Hamoud, et al., Environ. Sci. Pollut. Res. Int. 28 (28), 36942 (2021). https://doi.org/10.1007/s11356-021-14542-w
  12. Sohail, L. Sawati, Ferrari E., et al., Front. Plant Sci. 25 (13), 798751 (2022). https://doi.org/10.3389/fpls.2022.798751
  13. Chen Yu, Lu Jinying, Liu Min, et al., IET Nanobiotechn. 14 (5), 382 (2020). https://doi.org/10.1049/iet-nbt.2019.01832
  14. T. A. Yurina, G. V. Drobin, O. A. Bogoslovskaya, et al., Sel’skokhozyaistvennaya Biologiya. 56 (1), 135 (2021). https://doi.org/10.15389/agrobiology.2021.1.135eng
  15. I. O. Leipunsky, A. N. Zhigach, M. L. Kuskov, et al., J. Alloys Compd. 778, 271 (2018). https://doi.org/10.1016/ j. jallcom. 2018.11.088
  16. O. H. Lowery, N. J. Rosenbrough, A. L. Farr, et al., J. Biol. Chem. 27, 265 (1951).
  17. D. Arnon, J. Plant. Physiol. 24, 1 (1949).
  18. J. T. O. Kirch, Planta 78, 200 (1968).
  19. S. M. Dubo, K. A. Giles, J. K. Hmilton, et al., Anal. Chem. 28, 350 (1956).
  20. R. P. Johnson, T. L. Balwani, L. J. Johnson, et al., Anim. Sci. 25, 617 (1966).
  21. L. S. Bates, Plant. Soil. 39, 205 (1973).
  22. S. Afzal, N. K. Singh, Environ. Pollut. 314, 120224 (2022). https://doi.org/10.1016/j.envpol.2022.120224
  23. J.C. Tarafdar, R. Raliya, H. Mahawar et al. Agric. Res. 3, 257 (2014). https://doi.org/10.1007/s40003-014-0113
  24. S. K. Dhoke, P. Mahajan, R. Kamble, et al., Nanotechnol. Dev. 3, 111 (2013).
  25. S. Torabian, M. Zahedi, A.H. Khoshgoftar, J. Plant Nutr. 39, 172 (2016). https://doi.org/10.1080/01904167.2015.1009107
  26. S. L. Laware, S. Raskar, Int. J. Curr. Microbiol. Sci. 3, 874 (2014).
  27. А. M. Zhukov, V. I. Solodilov, I. V. Tretyakov, Russ. J. Phys. Chem. B 16, (5) 926 (2022).
  28. R. Prasad, V. Kumar, K. S. Prasad, Afr. J. Biotechnol. 13, 705 (2014). https://doi.org/10.5897/ajbx2013.13554
  29. F. Pinto, M. Celesti, K. Acebron, Plant Cell Environ. 43, 1637 (2020). doi: 10.1111/pce.13754.
  30. R. Raliya, J. C. Tarafdar, Agric. Res. 2, 48 (2013).
  31. V. L. Reddy Pullagurala, I. O. Adisa, S. Rawat. Plant Physiol. Biochem. 132, 120 (2018). https://doi.org/10.1016/j.plaphy.2018.08.037
  32. X. Wang, X. Yang, S. Chen, et al. Front Plant Sci. 6, 1243 (2016). https://doi.org/10.3389/fpls.2015.01243

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the experiment.

Download (105KB)
3. Fig. 2. Physicochemical characteristics of zinc nanoparticles: a – image of zinc NPs obtained by transmission electron microscopy; b – NP size distribution curve; c – X-ray diffraction pattern of NPs.

Download (118KB)
4. Fig. 3. Changes in morphometric parameters of pepper plants grown from seeds treated with a preparation containing zinc nanoparticles: 1 – control (untreated seeds); 2 – pre-sowing treatment of seeds with zinc NPs at a concentration of 10–5%; 3 – pre-sowing treatment of seeds with zinc NPs at a concentration of 10–6%; * – significance of changes according to Student’s t-test p ≤ 0.05.

Download (157KB)
5. Fig. 4. Changes in the content of chlorophyll A, chlorophyll B and total chlorophyll in pepper leaves after pre-sowing seed treatment with zinc nanoparticles in polymers: 1 – control (untreated seeds); 2 – pre-sowing seed treatment with zinc NPs at a concentration of 10–5%; 3 – pre-sowing seed treatment with zinc NPs at a concentration of 10–6%; * – significance of changes according to Student’s t-test p ≤ 0.05.

Download (95KB)
6. Fig. 5. Changes in the content of proline, soluble sugars and protein in the leaves of pepper plants after pre-sowing treatment of seeds with zinc nanoparticles in the composition of polymers: 1 – control (untreated seeds); 2 – pre-sowing treatment of seeds with zinc NPs at a concentration of 10–5%; 3 – pre-sowing treatment of seeds with zinc NPs at a concentration of 10–6%; * – significance of changes according to Student’s criterion p ≤ 0.05.

Download (114KB)

Copyright (c) 2024 Russian Academy of Sciences