Two-frequency pulsed laser irradiation to stimulate the development of coniferous trees

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of using radiation from a two-frequency pulsed copper vapor laser with wavelengths of 510.6 nm and 578.2 nm with an exposure of 30 to 120 s to stimulate the development of coniferous trees (spruce, pine, larch) with a single seed irradiation is shown. The stimulation effect manifests itself at various early stages of development, such as the awakening of seeds in the aquatic environment in the first hours of the experiment (according to electron absorption spectroscopy data), seed germination, and seedling growth under stressful cultivation conditions. Possible causes of light exposure to plant seeds are discussed.

Full Text

Restricted Access

About the authors

A. V. Lobanov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Moscow Pedagogical State University; Plekhanov Russian University of Economics

Author for correspondence.
Email: av.lobanov@mpgu.su
Russian Federation, Moscow; Moscow; Moscow

L. M. Apasheva

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: av.lobanov@mpgu.su
Russian Federation, Moscow

L. A. Smurova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: av.lobanov@mpgu.su
Russian Federation, Moscow

E. N. Ovcharenko

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: av.lobanov@mpgu.su
Russian Federation, Moscow

M. I. Budnik

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: av.lobanov@mpgu.su
Russian Federation, Moscow

V. V. Savransky

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: av.lobanov@mpgu.su
Russian Federation, Moscow

References

  1. V. I. Bukaty, V. P. Karmanchikov. Laser and harvest. Barnaul: ASU Publishing House (1999).
  2. P. S. Djurba and E. P. Djurba, Photonics Rus. 3, 34 (2010).
  3. A. V. Budagovsky, I. B. Kovsh. Laser technologies in agriculture. M.: Technosfera (2008).
  4. O. A. Shulgina, G. I. Kolesnikov, V. I. Zaostrovnykh, and G. I. Zaitsev, Vestnik KemGU. Series: Biol., Techn. Earth Sci. 1, 23 (2017).
  5. N. T. Gadzhimusieva, T. A. Asvarova, and A. S. Abdulaeva, Fundam. Res. 11, 1939 (2014).
  6. D. S. Buklagin, I. G. Golubev, N. P. Mishurov. Application of laser technologies in agriculture and processing industry: an analytical review. M.: FGBNU “Rosinformagrotech” (2020).
  7. G. Loers, D. V. Yashunsky, N. E. Nifantiev, and M. Schachner, J. Nat. Prod. 77, 1554 (2014). https://doi.org/10.1021/np4009738
  8. S. I. Yuran, M. R. Zaripov, V. N. Vershinin, Bulletin NGIEI. 2021. № 7 (122), 16. (2021). https://doi.org/10.24412/2227-9407-2021-7-16-25
  9. A. Grishkanich, A. Zhevlakov, V. Polyakov V., et al., Proc. SPIE – Int. Soc. Opt. Eng. 2016. V. 9887. 98873J. (2016). https://doi.org/10.1117/12.2228959
  10. G. Ya. Fraykin. Protein light sensors: photoexcited states, signaling properties and applications in optogenetics. M.: AR-Consult (2018).
  11. L. G. Koreneva, V. F. Zolin, B. L. Davydov. Nonlinear optics of molecular crystals. M.: Science (1985).
  12. B. F. Polkovnikov, J. Quantum Electron. 9, 796 (1979). https://doi.org/10.1070/QE1979v009n06ABEH009177
  13. M. A. Gradova, K. A. Zhdanova, N. A. Bragina, A. V. Lobanov, M. Ya. Mel’nikov, Russ. Chem. Bull. 64, 806 (2015). https://doi.org/10.1007/s11172-015-0937-z
  14. G. G. Komissarov, Khimicheskaya fizika 22, 24 (2003).
  15. A. V. Lobanov, E. N. Golubeva, E. M. Zubanova, M. Ya. Mel’nikov, High Energ. Chem. 43, 384 (2009). https://doi.org/10.1134/s0018143909050099
  16. S. G. Karpova, A. A. Ol’khov, A. V. Krivandin, et al., Polym. Sci. – Ser. A 61, 70 (2019). https://doi.org/10.1134/S0965545X19010140
  17. D. N. Nikogosyan, A. A. Oraevsky, V. I. Rupasov, Soviet J. Chem. Phys., 2 (3) 659 (1985).
  18. E. L. Terpugov, S. N. Udaltsov, and O. V. Degtyareva, Biophys. 66, 856 (2021).
  19. M. A. Ostrovsky and V. A. Nadtochenko, Russ. J. Phys. Chem. B 15, 344 (2021). https://doi.org/10.1134/S1990793121020226
  20. I. I. Pelevina, A. V. Akleev, I. N. Kogarko, et al., Russ. J. Phys. Chem. B 15, 1046 (2021). https://doi.org/10.1134/S1990793121060233
  21. K. F. Sergeichev, N. A. Lukina, L. M. Apasheva, E. N. Ovcharenko, A. V. Lobanov, Russ. J. Phys. Chem. B 16, 84 (2022). https://doi.org/10.1134/S1990793122010134
  22. L. A. Savintseva, A. A. Avdoshin, S. K. Ignatov, Russ. J. Phys. Chem. B 16, 445 (2022). https://doi.org/10.1134/s1990793122030216

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electronic absorption spectra of metabolites released into the aquatic environment during soaking of spruce seeds for 20 min for the control group (1) and for the experimental group with irradiation for 90 s (2).

Download (55KB)
3. Fig. 2. Kinetic curves of the release of metabolites during soaking of spruce seeds for the control group (1) and for the experimental group with irradiation for 90 s (2).

Download (63KB)

Copyright (c) 2024 Russian Academy of Sciences