Estimation of emissions from metallurgical plants using infrared fourier transform spectroscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Every year, metallurgical plants emit hundreds of thousands of tons of harmful substances into the atmosphere. Remote sensing of flue gases from chimneys of metallurgical plants is an urgent task for both industrial enterprises themselves and environmental control systems of nearby settlements. In this work, based on the results of remote optical monitoring of emissions from chimneys of metallurgical plants of the MMC “Norilsk Nickel’s”, Polar Division, the concentration of sulfur dioxide in the flue gases was estimated. The measurements were carried out using Infrared Fourier Transform Spectrometers operating in the range 7–13 µm with 4 cm-1 spectral resolution. A new technology for remote optical sensing in a passive mode of flue gases from metallurgical plants is proposed, including measurements both on cross sections of chimneys and plumes.

Full Text

Restricted Access

About the authors

A. N. Morozov

Bauman Moscow State Technical University

Email: igfil@mail.ru
Russian Federation, Moscow

S. E. Tabalin

Bauman Moscow State Technical University

Email: igfil@mail.ru
Russian Federation, Moscow

D. R. Anfimov

Bauman Moscow State Technical University

Email: igfil@mail.ru
Russian Federation, Moscow

I. B. Vintaykin

Bauman Moscow State Technical University

Email: igfil@mail.ru
Russian Federation, Moscow

V. L. Glushkov

Bauman Moscow State Technical University

Email: igfil@mail.ru
Russian Federation, Moscow

P. P. Demkin

Bauman Moscow State Technical University

Email: igfil@mail.ru
Russian Federation, Moscow

O. A. Nebritova

Bauman Moscow State Technical University

Email: igfil@mail.ru
Russian Federation, Moscow

Ig. S. Golyak

Bauman Moscow State Technical University

Email: igfil@mail.ru
Russian Federation, Moscow

E. V. Barkov

MMC “Norilsk Nickel’s”, Polar Division

Email: igfil@mail.ru
Russian Federation, Norilsk

A. V. Chebotaev

MMC “Norilsk Nickel’s”, Polar Division

Email: igfil@mail.ru
Russian Federation, Norilsk

M. S. Drozdov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: igfil@mail.ru
Russian Federation, Moscow

S. I. Svetlichnyi

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: igfil@mail.ru
Russian Federation, Moscow

I. L. Fufurin

Bauman Moscow State Technical University

Author for correspondence.
Email: igfil@mail.ru
Russian Federation, Moscow

References

  1. Golyak Il.S., Anfimov D.R., Vintaykin I.B. et al. // Russ. J. Phys. Chem. B 2023. V. 17. P. 320; https://doi.org/10.1134/S1990793123020264
  2. Rossi R., Ciparisse J.F., Gelfusa M. et al. // J. Instrum. 2019. V. 14. № 3. Article C03004; https://doi.org/10.1088/1748-0221/14/03/C03004
  3. Donateo A. , Villani M.G. , Feudo T.L., Chianese E. // Atmosphere. 2020. V. 11. № 10. P. 1054; https://doi.org/10.3390/atmos11101054
  4. Morozov I.I., Vasiliev E.S., Volkov N.D. et al. // Russ. J. Phys. Chem. B 2022. V. 16. P. 877; https://doi.org/10.1134/S1990793122050220
  5. Gaudio P., Gelfusa M., Malizia A. et al. // J. Phys. Conf. Ser. 2015. V. 658. № 1. Article 012004; https://doi.org/10.1088/1742-6596/658/1/012004
  6. Gaudio P., Malizia A., Gelfusa M. et al. // J. Instrum. 2017. V. 12. № 1. C01054; https://doi.org/10.1088/1748-0221/12/01/C01054
  7. Sung L.Y., Shie R.H., Lu C.J., Hazard J. // Mater. 2014. V. 265. P. 30; https://doi.org/10.1016/j.jhazmat.2013.11.006
  8. Fufurin I.L., Shlygin P.E., Pozvonkov A.A. et al. // Russ. J. Phys. Chem. B 2021. V. 15. P. 911; https://doi.org/10.1134/S1990793121050146
  9. Kau N., Jindal G., Kaur R. et al. // Results Chem. 2022. V. 4. 100678; https://doi.org/10.1016/j.rechem.2022.100678
  10. Carlisle C.B., van der Laan J.E., Carr L.W. et al. // Appl. Opt. 1995. V. 34. P. 6187; https://doi.org/10.1364/AO.34.006187
  11. Pierrottet D.F., Senft D.C. // Chemical and Biological Sensing / Ed. by Gardner P.J., Proc. SPIE. 2000. V. 4036. P. 17; https://doi.org/10.1117/12.394075
  12. Li J., Yu Z. , Du Z. et al. // Remote Sens. 2020. V. 12. № 17. Article 2771; https://doi.org/10.3390/rs12172771
  13. Yang Z., Zhang Y., Chen Y. et al. // Opt. Commun. 2022. V. 518. № 5. Article 128359; https://doi.org/10.1016/j.optcom.2022.128359
  14. Golubkov G.V., Adamson S.O., Borchevkina O.P. et al. // Russ. J. Phys. Chem. B 2022. V. 16. P. 508; https://doi.org/10.1134/S1990793122030058
  15. Innocenti F., Robinson R., Gardiner T. et al. // Remote Sens. 2017. V. 9. № 9. Article 953; https://doi.org/10.3390/rs9090953
  16. Cezard N., Le Mehaute S., Le Gouët J. et al. // Opt. Express. V. 28. № 15. P. 22345; https://doi.org/10.1364/OE.394553
  17. Johansson M., Galle B., Yu T. et al. // Atmos. Environ. 2008. V. 42. № 29. P. 6926; https://doi.org/10.1016/j.atmosenv.2008.05.025
  18. Wang S., Zhou B., Wang Z. et al. // J. Geophys. Res. Atmos. 2012. V. 117. Article D13305; https://doi.org/10.1029/2011JD016983
  19. Constantin D.E., Merlaud A., van Roozendael M. et al. // Sensors. 2013. V. 13. № 3. P. 3922; https://doi.org/10.3390/s130303922
  20. Tan W., Liu C., Wang S. et al. // Atmos. Res. 2020. V. 245. № 2. 105037; https://doi.org/10.1016/j.atmosres.2020.105037
  21. Vojtisek-Lom M., Zardini A.A., Pechout M. et al. // Atmos. Meas. Tech. 2020. V. 13. № 11. P. 5827; https://doi.org/10.5194/amt-13-5827-2020
  22. Sun Q., Liu T., Yu X. et al. // Sensors Actuators, B. 2023. V. 390. Article 133901; https://doi.org/10.1016/j.snb.2023.133901
  23. Fufurin I.L., Vintaikin I.B., Nazolin A.L. et al. // Russ. J. Phys. Chem. В 2022. V. 16. P. 483; https://doi.org/10.1134/S1990793122030034
  24. Schröter M., Obermeier A., Brüggemann D. et al. // J. Air Waste Manage. Assoc. 2003. V. 53. № 6. P. 716; https://doi.org/10.1080/10473289.2003.10466213
  25. Mønster J., Kjeldsen P., Scheutz C. // Waste Manag. 2019. V. 87. P. 835; https://doi.org/10.1016/j.wasman.2018.12.047
  26. Boreisho A.S., Volodenko V.A., Gryaznov N.A. et al. // Proceedings of Laser Optics 2003: High-Power Gas Lasers / Ed. by Danilov O.B. Proc. SPIE. 2003. V. 5479. P. 177; https://doi.org/10.1117/12.558393
  27. Yue B., Yu S., Li M. et al. // Remote Sens. 2022. V. 14. № 20. Article 5150; https://doi.org/10.3390/rs14205150
  28. Tan W., Zhao S., Liu C. et al. // Atmos. Environ. 2019. V. 200. P. 228; https://doi.org/10.1016/j.atmosenv.2018.12.009
  29. Hamilton P.M., Varey R.H., Millán M.M. // Proc. Intern. Sympos. Sulfur in the Atmosphere. Dubrovnik, Yugoslavia, 1977. V. 12. P. 127; https://doi.org/10.1016/B978-0-08-022932-4.50017-3
  30. Theys N., De Smedt I., Yu H. et al. // Atmos. Meas. Tech. 2017. V. 10. P. 119; https://doi.org/10.5194/amt-10-119-2017
  31. Gamal G., Abdeldayem O.M., Elattar H. et al. // Sustainability. 2023. V. 15. № 12. Article 9362; https://doi.org/10.3390/su15129362
  32. Bauduin S., Clarisse L., Clerbaux C. et al. // J. Geophys. Res. Atmos. 2014. V. 119. № 7. P. 4253; https://doi.org/10.1002/2013JD021405
  33. Tømmervik H., Johansen B.E., Pedersen J.P. // Sci. Total Environ. 1995. V. 160–161. P. 753; https://doi.org/10.1016/0048-9697(95)04409-T
  34. Bogatyrev D.M., Petrov G.V., Tsymbulov L.B. // Vestnik of Nosov Magnitogorsk State Technical University. 2022. V. 20. P. 14; ttps://doi.org/10.18503/1995-2732-2022-20-1-14-24
  35. The State report of the Ministry of Ecology and Rational Nature Management of the Krasnoyarsk Territory “On the state and protection of the environment in the Krasnoyarsk Territory for 2019”; http://www.mpr.krskstate.ru/envir/page5849/0/id/45884
  36. Mikhaylenko S.N., Babikov Y.L., Golovko V.F. // Optics of the atmosphere and ocean. 2005. V. 18. P. 765.
  37. Fufurin I.L., Golyak Il.S., Bashkin S.V. et al. // Proc. SPIE. Optics + Optoelectronics. 2021. V. 11775. Article 1177512; https://doi.org/10.1117/12.2588714
  38. Morozov A.N., Svetlichnyi S.I. Fundamentals of Fourier Radio Spectrometry. Nauka, Moscow, 2014.
  39. Goyal R., Khare M. // J. Civil. Environ. Eng. 2012. V. 1. S1; https://doi.org/10.4172/2165-784X.S1-001
  40. Kashkin V.B., Zuev D.V., Kurako M.A. et al. // IOP Conf. Ser.: Earth Environ. Sci. 2018. V. 193. № 1. Article 012029; https://doi.org/10.1088/1755-1315/193/1/012029

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of recording the spectra of diesel fuel exhaust gases with temperature T₁ using an IR Fourier spectrometer: 1 – exhaust gases from smoke stacks, 2 – incoming radiation, 3 – collecting lens, 4 – beam splitter, 5 – movable interferometer mirror, 6 – fixed interferometer mirror, 7 – CRT photodetector.

Download (96KB)
3. Fig. 2. Scheme of the experiment for remote recording of IR spectra of diesel fuel exhaust gases: 1 – smoke stack, 2 – exhaust gases, 3 and 4 – IR Fourier spectrometers, 5 – directions of IR radiation recording.

Download (311KB)
4. Fig. 3. Reference spectrum of SO₂ with a mass concentration of 139 mg/m³. Spectral resolution is 4 cm⁻¹.

Download (84KB)
5. Fig. 4. Thermograms of emissions from smokestacks of the Copper Plant of the Polar Division of MMC Norilsk Nickel: a – DT No. 1, b – DT No. 2. Measurements were taken on 10.07.2023.

Download (382KB)
6. Fig. 5. Block diagrams of the values ​​of integral concentrations of SO₂ obtained on sections of DT No. 1 and DT No. 2 of the Copper Plant of the Polar Division of MMC Norilsk Nickel. The time and conditions of the measurements are presented in Table 2.

Download (102KB)
7. Fig. 6. Block diagrams of the values ​​of integrated SO₂ concentrations obtained at the DT No. 1 and DT No. 2 plumes of the Copper Plant of the Polar Division of MMC Norilsk Nickel. The time and conditions of the measurements are presented in Table 3.

Download (92KB)
8. Fig. 7. Dynamics of the integral concentration of SO₂ measured by scanning along the azimuth with an angle of 40° in the exhaust gases from two diesel fuels of the Copper Plant of the Polar Division of MMC Norilsk Nickel. Measurements were carried out on 07.07.2023.

Download (175KB)
9. Fig. 8. Block diagrams of the values ​​of integral concentrations of SO₂ obtained on the section of diesel fuel of the Nadezhda Metallurgical Plant, Polar Division of MMC Norilsk Nickel, using FSR-1 and FSR-2. The time and conditions of the measurements are presented in Table 4.

Download (99KB)

Copyright (c) 2024 Russian Academy of Sciences