Catalytic ignition of deuterium–air mixtures over a metallic rhodium surface at pressures of 1–2 atm

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The regularities of catalytic ignition of deuterium–air mixtures above the surface of metallic rhodium at pressures of 1–2 atm and temperatures of 20–250 °C using hyperspectrometers in the range of 400–1650 nm and high-speed filming have been established. It is established that the catalytic ignition of deuterium–air mixtures in the studied temperature range is observed at a deuterium content of more than 12%; and at a deuterium content of less than 12%, only intense heating of the catalytic wire is observed. It is shown that the initial ignition source occurs on the surface of the reactor. In subsequent experiments, under the same conditions, the location of the original center changes. It has been found that the upper limit of the catalytic ignition above the D2–air mixture is noticeably lower than the lower ignition limit of the H2–air mixture. Thus, D2 is more combustible than H2 over the surface of Rh at a pressure above 1 atm. The limits of catalytic ignition are even lower than 20 °C, although the flame velocity in hydrogen–air mixtures and the flame temperature in these mixtures of the same composition are much higher than those of deuterium–air mixtures. The nature of the detected kinetic inverse isotope effect is probably determined by the high level of activity of rhodium deuteride in relation to the deuterium oxidation reaction.

Full Text

Restricted Access

About the authors

K. Ya. Troshin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: troshin@center.chph.ras.ru
Russian Federation, Moscow

N. M. Rubtsov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: troshin@center.chph.ras.ru
Russian Federation, Chernogolovka

V. I. Chernysh

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: troshin@center.chph.ras.ru
Russian Federation, Chernogolovka

G. I. Tsvetkov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: troshin@center.chph.ras.ru
Russian Federation, Chernogolovka

I. O. Shamshin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: troshin@center.chph.ras.ru
Russian Federation, Moscow

Yu. A. Izmaylova

Scientific and Technical Center “Reagent”

Email: troshin@center.chph.ras.ru
Russian Federation, Moscow

A. P. Kalinin

Ishlinsky Institute for Problems of Mechanics, Russian Academy of Sciences

Email: troshin@center.chph.ras.ru
Russian Federation, Moscow

A. A. Leont’ev

Scientific and Technical Center “Reagent”

Email: troshin@center.chph.ras.ru
Russian Federation, Moscow

A. I. Rodionov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Scientific and Technical Center “Reagent”

Email: troshin@center.chph.ras.ru
Russian Federation, Moscow; Moscow

References

  1. L. Jewell, B. Davis, Applied Catalysis A: General 310, 1 (2006).
  2. J. E. Worsham, M. K. Wilkinson, C. G. Shull. Journal of Physics and Chemistry of Solids 3, 303 (1957).
  3. H. Chen, F.-S. Liu , Physics Letters A, 137, 485 (1989).
  4. N. M. Rubtsov, V. I. Chernysh, G. I. Tsvetkov, K. Ya. Troshin, Combust. Flame, 218, 179 (2020).
  5. F. Wesley, Table of recommended rate constants occurring in combustion. National bureau of standards, Washington DC, 1980.
  6. M. Fleischmann, and S. Pons, J. Electroanal. Chem. Interfacial Electrochem. 261, 301 (1989)
  7. C.P. Berlinguette, Y.M. Chiang, J.N.Munday et al., Nature 570, 45 (2019). https://doi.org/10.1038/s41586-019-1256-6
  8. A.E. Shilov, G.B. Shul’pin, Activation and catalytic reactions of saturated hydrocarbons in the presence of metal complexes, Springer Science & Business Media, 2001.
  9. K. Ya. Troshin, N. M. Rubtsov, G. I. Tsvetkov et al., Russian Journal of Physical Chemistry B 16, 693. (2022). https://doi.org/10.1134/S1990793122040303
  10. K. Ya. Troshin, N. M. Rubtsov, G. I. Tsvetkov, V. I. et al., Russian Journal of Physical Chemistry B 17. 979. (2023). https://doi.org/10.1134/S1990793123040310
  11. I. D. Rodionov, A. I. Rodionov, L. A. Vedeshin et al., Izvestiya Atmospheric and Oceanic Physics, 50, 989 (2014). https://doi.org/10.1134/S0001433814090175
  12. A.P. Kalinin, A.G. Orlov, A.I. Rodionov, K.Ya Tro shin // Physical-Chemical Kinetics in Gas Dynamics. 2009. V. 8. http://chemphys.edu.ru/issues/2009-8/articles/202/
  13. A.P. Kalinin, K.Ya. Troshin, A.G. Orlov, A.I. Rodio nov // Sensors and systems, 12, 19 (2008).
  14. N.M. Rubtsov, K.Ya. Troshin, M.I. Alymov, Catalytic ignition of hydrogen and hydrogen-hydrocarbon blends over noble metals, Springer International Publishing, 2023.
  15. D. Chalet, A. Mahe, J. Migaud and J.-F. Hetet, Applied Energy 88, 2988 (2011).
  16. K. Ya. Troshin, N. M. Rubtsov, G. I. Tsvetkov et al., Russian Journal of Physical Chemistry B 16, 39, (2022). https://doi.org/10.1134/S199079312201016X
  17. K. Ya. Troshin, N. M. Rubtsov, G. I. Tsvetkov et al., Russian Journal of Physical Chemistry. B 17, 979, (2023). https://doi.org/10.1134/S1990793123040310
  18. B. Lewis, and G. von Elbe, Combustion, Explosions and Flame in Gases, Academic, New York, London, 1987.
  19. A.P. Kreshkov, The grounds of analytical chemistry. V. 1. Theoretical grounds. Qualitative analysis, Moscow, Chemistry, 1970 (in Russian). High-resolution spectral modeling. https://www.spectralcalc.com/blackbody_calculator/blackbody.php
  20. M. Wang, H. An, W. Cai, X. Shao, Chemosensors, 11, 37 (2023). https://doi.org/10.3390/chemosensors11010037

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental dependences of the temperatures of the PPW and NPW over the Rh/Pd wire on the D2 content in the mixture (circles). The crossed-out circle denotes the PPW temperature, filled circles indicate the NPW temperatures of the H2–air mixture over the Rh/Pd wire [4, 12], the dashed line corresponds to 20 °C.

Download (50KB)
3. Fig. 2. a – High-speed filming of catalytic ignition of a 15% D2 + air mixture over a Rh/Pd wire (600 frames/s, T0 = 50 °C, P0 = 1.75 atm). The first frame corresponds to the moment of occurrence of the primary source of ignition. b – High-speed filming of developing catalytic ignition of a 15% D2 + air mixture over a Rh/Pd wire (1200 frames/s, T0 = 50 °C, P0 = 1.75 atm).

Download (202KB)
4. Fig. 3. Simultaneous recording of changes in pressure and average temperature of Rh/Pd wire during ignition: a – mixture of 20% D2 + air (T0 = 63 °C, P0 = 1.8 atm); b – mixture of 17% D2 + air (T0 = 24 °C, P0 = 1.5 atm). c – Change in pressure during ignition of a mixture of 20% D2 + air at different temperatures, P = 1.8 atm.

Download (174KB)
5. Fig. 4. Flame emission spectra of the H2/D2–air mixture: a – at a wavelength of 400–1000 nm; 1 – 40% H2 + air, 2 – 17% D2 + air, asterisks – calculations using Planck’s formula [20]; b – 900–1650 nm; 1 – 20% H2 + air, 2 – 17% D2 + air.

Download (122KB)

Copyright (c) 2024 Russian Academy of Sciences