Calculation of radiation characteristics of shock heated air by Direct Simulation Monte Carlo method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of modeling the radiation characteristics of air behind the front of a strong shock wave, performed using the Direct Simulation Monte Carlo method, are presented. The model used takes into account various physical and chemical processes occurring in shock-heated air, including translational-rotational and translational-vibrational energy exchange, kinetics of chemical reactions, excitation of electronic levels of atoms and molecules, as well as emission and absorption processes for a discrete spectrum. As a result of the calculations, timeintegrated spectrograms of the volumetric radiation power of shock-heated air were obtained in absolute units in the range of shock wave velocities from 7.4 to 10.7 km/s at a gas pressure in front of the shock wave front of 0.25 Torr. The calculation data are compared with experimental data obtained on the double-diaphragm shock tube DDST-M of the Institute of Mechanics of Moscow State University.

Full Text

Restricted Access

About the authors

A. L. Kusov

Institute of Mechanics, Moscow State University

Email: vyl69@mail.ru
Russian Federation, Moscow

N. G. Bykova

Institute of Mechanics, Moscow State University

Email: vyl69@mail.ru
Russian Federation, Moscow

G. Ya. Gerasimov

Institute of Mechanics, Moscow State University

Email: vyl69@mail.ru
Russian Federation, Moscow

P. V. Kozlov

Institute of Mechanics, Moscow State University

Email: vyl69@mail.ru
Russian Federation, Moscow

I. E. Zabelinsky

Institute of Mechanics, Moscow State University

Email: vyl69@mail.ru
Russian Federation, Moscow

V. Yu. Levashov

Institute of Mechanics, Moscow State University

Author for correspondence.
Email: vyl69@mail.ru
Russian Federation, Moscow

References

  1. O. Uyanna and H. Najafi, Acta Astronaut. 176, 341 (2020). https://doi.org/10.1016/j.actaastro.2020.06.047
  2. W.H. Willcockson, J. Spacecraft Rockets. 36, 470 (1999).
  3. S.T. Surzhikov, Computer aerophysics of descent space vehicles. 2D Models (Fizmatlit, Moscow, 2018).
  4. P. Reyner, Prog. Aerospace Sci. 85, 1 (2016). https://doi.org/10.1016/j.paerosci.2016.04.002
  5. S. Gu and H. Olivier, Prog. Aerospace Sci.113, 100607 (2020). https://doi.org/10.1016/j.paerosci.2020.100607
  6. S.T. Surzhikov, Fluid Dyn. 53, 325 (2018).
  7. J. Leitner and T. Hyde, Acta Astronaut. 202, 333 (2023). https://doi.org/10.1016/j.actaastro.2022.10.043
  8. U.A. Sheikh, R.G. Morgan, and T.J. McIntyre, AIAA J. 53, 3589 (2015).
  9. A.M. Brandis, C.O. Johnston, B.A. Cruden, and D. Prabhu, J. Thermophys. Heat Trans. 31, 178 (2017). https://doi.org/10.2514/1.T4878
  10. P.V. Kozlov and S.T. Surzhikov, AIAA Paper No. 2017-0157 (2017).
  11. P. L. Collen, L. J. Doherty, and M. McGilvray, Intern. Conf. FAR-2019. № 1053360 (2019).
  12. I.E. Zabelinskii, P.V. Kozlov, Yu.V. Akimov, N.G. Bykova, G.Ya. Gerasimov, Yu.V. Tunik, and V.Yu. Levashov, Russ. J. Phys. Chem. B 15, 963 (2021).
  13. N.G. Bykova, I.E. Zabelinskii, P.V. Kozlov, G.Ya. Gerasimov, and V.Yu. Levashov, Russ. J. Phys. Chem. B 17, 1152 (2023).
  14. S.T. Surzhikov, Rus. J. Phys. Chem. B 4, 613 (2010).
  15. E. Whiting, C. Park, Y. Liu, J. Arnold, and J. Paterson, NASA Ref. Publ. No. 1389 (1996).
  16. N. G. Bykova and L. A. Kuznetsova, Opt. Spectrosc. 105, 668 (2008).
  17. C.O. Johnston, B.R. Hollis, and K. Sutton, J. Spacecraft Rockets. 45, 865 (2008). https://doi.org/10.2514/1.33004
  18. N. Kumar and A. Bansal, Acta Astronaut. 205, 172 (2023). https://doi.org/10.1016/j.actaastro.2023.01.031
  19. A. Lemal, C.M. Jacobs, M.-Y. Perrin, C.O. Laux, P. Tran, and E. Raynaud, J. Thermophys. Heat Transf. 30, 197 (2016). https://doi.org/10.2514/1.T4550
  20. I.T. Karpuzcu, M.P. Jouffray, and D.A. Levin, J. Thermophys. Heat Transf. 36, 982 (2022). https://doi.org/10.2514/1.T6505
  21. Y.W. Du, S.R. Sun, M.J. Tan, Y. Zhou, X. Chen, X. Meng, and H.X. Wang, Acta Astronaut. 193, 521 (2022). https://doi.org/10.1016/j.actaastro.2022.01.034
  22. S.T. Surzhikov, Fiz.-Khim. Kinet. Gaz. Din. 23 (4), 1 (2022).
  23. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994).
  24. D. Jiang, P. Wang, J. Li, and M. Mao, Entropy. 24, 836 (2022). https://doi.org/10.3390/e24060836
  25. M. Gosma and K.A. Stephani, AIAA Paper No. 2022-2356 (2022).
  26. S. Chen and C. Stemmer, J. Spacecraft Rockets. 59, 1634 (2022). https://doi.org/10.2514/1.A35359
  27. Q. Li, J. Zeng, Z. Huang, and L. Wu, J. Fluid Mech. 965, A13 (2023).
  28. S. Thirani, I.T. Karpuzcu, and D.A. Levin, AIAA Pape No. 2023-2089 (2023).
  29. T. Zhu, Z. Li, and D.A. Levin, J. Thermophys. Heat Transf. 28, 623 (2014). https://doi.org/10.2514/1.T4419
  30. S.F. Gimelshein and I.J. Wysong, J. Thermophys. Heat Transf. 33, 606 (2019). https://doi.org/10.2514/1.T5555
  31. P.V. Kozlov, A.L. Kusov, N.G. Bykova, I.E. Zabelinskii, V.Yu. Levashov, and G.Ya. Gerasimov, Russ. J. Phys. Chem. B 17, 456 (2023).
  32. A.L. Kusov, N.G. Bykova, G.Ya. Gerasimov, I.E. Zabelinskii, P.V. Kozlov, V.Yu. Levashov, Fluid Dyn. 58, 1155 (2023).
  33. I.D. Boyd, AIAA Paper № 2013-2557 (2013).
  34. C. Park, J.T. Howe, R.L. Jaffe, and G.V. Candler, J. Thermophys. Heat Transfer. 8, 9 (1994). https://doi.org/10.2514/3.496
  35. L.B. Ibragimova and O.P. Shatalov, in High Temperature Phenomena in Shock Waves (Springer, Berlin, 2012). p. 99.
  36. C. Park, Nonequilibrium Hypersonic Aerothermodynamics (Wiley, New York, 1990).
  37. S. Adamson, V. Astapenko, M. Deminskii, A. Eletskii, B. Potapkin, L. Sukhanov, and A. Zaitsevskii, Chem. Phys. Lett. 436, 308 (2007). https://doi.org/ 10.1016/j.cplett.2007.01.057
  38. M.J. Brunger, L. Campbell, D.C. Cartwright, A.G. Middleton, B. Mojarrabi, and P.J.O. Teubner, J. Phys. B: At. Mol. Opt. Phys. 33, 809 (2000).
  39. NIST Atomic Spectra Database, Version 5.9 (NIST, Gaithersburg, 2021).
  40. L.A. Kuznetsova, N.E. Kuzmenko, Yu.Ya. Kuzyakov, and Yu.A. Plastinin, Probabilities of optical transitions of diatomic molecules (Nauka, Moscow, 1980).
  41. Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, 3rd ed. (Dover Publ., New York, 2002).
  42. N.R. Badnell, M.F. Bautista, K. Butler, et al., Mon. Not. R. Astron. Soc. 360, 458 (2005).
  43. I. E. Zabelinskii, P. V. Kozlov, Yu. V. Akimov, N. G. Bykoba, G. Ya. Gerasimov, Yu. V. Tunik, and V. Yu. Levashov, Rus. J. Phys. Chem. B 15, 963 (2021).
  44. P.V. Kozlov, N.G. Bykova, G.Ya. Gerasimov, V.Yu. Levashov, M.A. Kotov, and I.E. Zabelinsky, Acta Astronaut. 214, 303 (2024). https://doi.org/10.1016/j.actaastro.2023.10.033
  45. V.V. Kazakov, V.G. Kazakov, V.S. Kovalev, O.I. Meshkov, and A.S. Yatsenko, Phys. Scr. 92, 105002 (2017).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Cross section of excitation of the NO molecule by electron impact during the transition X 2Π → D2Σ+: 1 – calculation using formula (1); 2 – calculation using the similarity function method [37]; 3 – experimental data [38].

Download (63KB)
3. Fig. 2. Oscillator strengths for molecular band systems: a – NO(ε), b – N2+(1−).

Download (102KB)
4. Fig. 3. Calculated integral spectrograms of air radiation at an initial pressure of p0 = 0.25 Torr and shock wave velocities of VSW = 8.9 (a) and 10.7 km/s (b).

Download (185KB)
5. Fig. 4. Comparison of the calculated (1) and measured (2) spectrograms of air radiation in the UV/VIS region of the spectrum in the DDST-M shock tube [44] at p0 = 0.25 Torr and VSW = 0.4 km/s.

Download (123KB)
6. Fig. 5. Partial contribution of various components to the radiation of shock-heated air in the UV/VIS spectral region at p0 = 0.25 Torr and VSW = 0.4 km/s.

Download (102KB)
7. Fig. 6. Comparison of the calculated (1) and measured (2) in the DDST-M shock tube [44] air radiation spectrograms in the VIS/IR spectral region at p0 = 0.25 Torr and VSW = 10.4 km/s.

Download (144KB)
8. Fig. 7. Calculated (1) and recorded by the measuring channels HI (2), HII (3) [44] evolution of the radiation of oxygen atoms at a wavelength of λ = 777 nm at p0 = 0.25 Torr and VSW = 8.9 km/s.

Download (84KB)

Copyright (c) 2024 Russian Academy of Sciences