Calculation of radiation characteristics of shock heated air by Direct Simulation Monte Carlo method
- Authors: Kusov A.L.1, Bykova N.G.1, Gerasimov G.Y.1, Kozlov P.V.1, Zabelinsky I.E.1, Levashov V.Y.1
-
Affiliations:
- Institute of Mechanics, Moscow State University
- Issue: Vol 43, No 7 (2024)
- Pages: 47-55
- Section: Combustion, explosion and shock waves
- URL: https://vestnikugrasu.org/0207-401X/article/view/674924
- DOI: https://doi.org/10.31857/S0207401X24070058
- ID: 674924
Cite item
Abstract
The results of modeling the radiation characteristics of air behind the front of a strong shock wave, performed using the Direct Simulation Monte Carlo method, are presented. The model used takes into account various physical and chemical processes occurring in shock-heated air, including translational-rotational and translational-vibrational energy exchange, kinetics of chemical reactions, excitation of electronic levels of atoms and molecules, as well as emission and absorption processes for a discrete spectrum. As a result of the calculations, timeintegrated spectrograms of the volumetric radiation power of shock-heated air were obtained in absolute units in the range of shock wave velocities from 7.4 to 10.7 km/s at a gas pressure in front of the shock wave front of 0.25 Torr. The calculation data are compared with experimental data obtained on the double-diaphragm shock tube DDST-M of the Institute of Mechanics of Moscow State University.
Keywords
Full Text

About the authors
A. L. Kusov
Institute of Mechanics, Moscow State University
Email: vyl69@mail.ru
Russian Federation, Moscow
N. G. Bykova
Institute of Mechanics, Moscow State University
Email: vyl69@mail.ru
Russian Federation, Moscow
G. Ya. Gerasimov
Institute of Mechanics, Moscow State University
Email: vyl69@mail.ru
Russian Federation, Moscow
P. V. Kozlov
Institute of Mechanics, Moscow State University
Email: vyl69@mail.ru
Russian Federation, Moscow
I. E. Zabelinsky
Institute of Mechanics, Moscow State University
Email: vyl69@mail.ru
Russian Federation, Moscow
V. Yu. Levashov
Institute of Mechanics, Moscow State University
Author for correspondence.
Email: vyl69@mail.ru
Russian Federation, Moscow
References
- O. Uyanna and H. Najafi, Acta Astronaut. 176, 341 (2020). https://doi.org/10.1016/j.actaastro.2020.06.047
- W.H. Willcockson, J. Spacecraft Rockets. 36, 470 (1999).
- S.T. Surzhikov, Computer aerophysics of descent space vehicles. 2D Models (Fizmatlit, Moscow, 2018).
- P. Reyner, Prog. Aerospace Sci. 85, 1 (2016). https://doi.org/10.1016/j.paerosci.2016.04.002
- S. Gu and H. Olivier, Prog. Aerospace Sci.113, 100607 (2020). https://doi.org/10.1016/j.paerosci.2020.100607
- S.T. Surzhikov, Fluid Dyn. 53, 325 (2018).
- J. Leitner and T. Hyde, Acta Astronaut. 202, 333 (2023). https://doi.org/10.1016/j.actaastro.2022.10.043
- U.A. Sheikh, R.G. Morgan, and T.J. McIntyre, AIAA J. 53, 3589 (2015).
- A.M. Brandis, C.O. Johnston, B.A. Cruden, and D. Prabhu, J. Thermophys. Heat Trans. 31, 178 (2017). https://doi.org/10.2514/1.T4878
- P.V. Kozlov and S.T. Surzhikov, AIAA Paper No. 2017-0157 (2017).
- P. L. Collen, L. J. Doherty, and M. McGilvray, Intern. Conf. FAR-2019. № 1053360 (2019).
- I.E. Zabelinskii, P.V. Kozlov, Yu.V. Akimov, N.G. Bykova, G.Ya. Gerasimov, Yu.V. Tunik, and V.Yu. Levashov, Russ. J. Phys. Chem. B 15, 963 (2021).
- N.G. Bykova, I.E. Zabelinskii, P.V. Kozlov, G.Ya. Gerasimov, and V.Yu. Levashov, Russ. J. Phys. Chem. B 17, 1152 (2023).
- S.T. Surzhikov, Rus. J. Phys. Chem. B 4, 613 (2010).
- E. Whiting, C. Park, Y. Liu, J. Arnold, and J. Paterson, NASA Ref. Publ. No. 1389 (1996).
- N. G. Bykova and L. A. Kuznetsova, Opt. Spectrosc. 105, 668 (2008).
- C.O. Johnston, B.R. Hollis, and K. Sutton, J. Spacecraft Rockets. 45, 865 (2008). https://doi.org/10.2514/1.33004
- N. Kumar and A. Bansal, Acta Astronaut. 205, 172 (2023). https://doi.org/10.1016/j.actaastro.2023.01.031
- A. Lemal, C.M. Jacobs, M.-Y. Perrin, C.O. Laux, P. Tran, and E. Raynaud, J. Thermophys. Heat Transf. 30, 197 (2016). https://doi.org/10.2514/1.T4550
- I.T. Karpuzcu, M.P. Jouffray, and D.A. Levin, J. Thermophys. Heat Transf. 36, 982 (2022). https://doi.org/10.2514/1.T6505
- Y.W. Du, S.R. Sun, M.J. Tan, Y. Zhou, X. Chen, X. Meng, and H.X. Wang, Acta Astronaut. 193, 521 (2022). https://doi.org/10.1016/j.actaastro.2022.01.034
- S.T. Surzhikov, Fiz.-Khim. Kinet. Gaz. Din. 23 (4), 1 (2022).
- G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994).
- D. Jiang, P. Wang, J. Li, and M. Mao, Entropy. 24, 836 (2022). https://doi.org/10.3390/e24060836
- M. Gosma and K.A. Stephani, AIAA Paper No. 2022-2356 (2022).
- S. Chen and C. Stemmer, J. Spacecraft Rockets. 59, 1634 (2022). https://doi.org/10.2514/1.A35359
- Q. Li, J. Zeng, Z. Huang, and L. Wu, J. Fluid Mech. 965, A13 (2023).
- S. Thirani, I.T. Karpuzcu, and D.A. Levin, AIAA Pape No. 2023-2089 (2023).
- T. Zhu, Z. Li, and D.A. Levin, J. Thermophys. Heat Transf. 28, 623 (2014). https://doi.org/10.2514/1.T4419
- S.F. Gimelshein and I.J. Wysong, J. Thermophys. Heat Transf. 33, 606 (2019). https://doi.org/10.2514/1.T5555
- P.V. Kozlov, A.L. Kusov, N.G. Bykova, I.E. Zabelinskii, V.Yu. Levashov, and G.Ya. Gerasimov, Russ. J. Phys. Chem. B 17, 456 (2023).
- A.L. Kusov, N.G. Bykova, G.Ya. Gerasimov, I.E. Zabelinskii, P.V. Kozlov, V.Yu. Levashov, Fluid Dyn. 58, 1155 (2023).
- I.D. Boyd, AIAA Paper № 2013-2557 (2013).
- C. Park, J.T. Howe, R.L. Jaffe, and G.V. Candler, J. Thermophys. Heat Transfer. 8, 9 (1994). https://doi.org/10.2514/3.496
- L.B. Ibragimova and O.P. Shatalov, in High Temperature Phenomena in Shock Waves (Springer, Berlin, 2012). p. 99.
- C. Park, Nonequilibrium Hypersonic Aerothermodynamics (Wiley, New York, 1990).
- S. Adamson, V. Astapenko, M. Deminskii, A. Eletskii, B. Potapkin, L. Sukhanov, and A. Zaitsevskii, Chem. Phys. Lett. 436, 308 (2007). https://doi.org/ 10.1016/j.cplett.2007.01.057
- M.J. Brunger, L. Campbell, D.C. Cartwright, A.G. Middleton, B. Mojarrabi, and P.J.O. Teubner, J. Phys. B: At. Mol. Opt. Phys. 33, 809 (2000).
- NIST Atomic Spectra Database, Version 5.9 (NIST, Gaithersburg, 2021).
- L.A. Kuznetsova, N.E. Kuzmenko, Yu.Ya. Kuzyakov, and Yu.A. Plastinin, Probabilities of optical transitions of diatomic molecules (Nauka, Moscow, 1980).
- Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, 3rd ed. (Dover Publ., New York, 2002).
- N.R. Badnell, M.F. Bautista, K. Butler, et al., Mon. Not. R. Astron. Soc. 360, 458 (2005).
- I. E. Zabelinskii, P. V. Kozlov, Yu. V. Akimov, N. G. Bykoba, G. Ya. Gerasimov, Yu. V. Tunik, and V. Yu. Levashov, Rus. J. Phys. Chem. B 15, 963 (2021).
- P.V. Kozlov, N.G. Bykova, G.Ya. Gerasimov, V.Yu. Levashov, M.A. Kotov, and I.E. Zabelinsky, Acta Astronaut. 214, 303 (2024). https://doi.org/10.1016/j.actaastro.2023.10.033
- V.V. Kazakov, V.G. Kazakov, V.S. Kovalev, O.I. Meshkov, and A.S. Yatsenko, Phys. Scr. 92, 105002 (2017).
Supplementary files
