Methods for measuring electron concentration in shock waves

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The current state of research on measuring the electron concentration in low-temperature plasma in the vicinity of a strong shock wave, which simulates the conditions of the descend spacecraft entry into the Earth’s atmosphere is considered. Various physicochemical processes leading to the formation of low-temperature plasma both ahead of the shock wave front and in the shock-heated gas are analyzed. A critical review of various plasma diagnostic methods is made, their advantages and disadvantages are noted. An analysis of numerous experimental data on measuring the electron concentration in various shock-heated gases under various conditions was carried out.

Full Text

Restricted Access

About the authors

G. Ya. Gerasimov

Institute of Mechanics, Lomonosov Moscow State University

Email: vyl69@mail.ru
Russian Federation, Moscow

V. Yu. Levashov

Institute of Mechanics, Lomonosov Moscow State University

Author for correspondence.
Email: vyl69@mail.ru
Russian Federation, Moscow

P. V. Kozlov

Institute of Mechanics, Lomonosov Moscow State University

Email: vyl69@mail.ru
Russian Federation, Moscow

N. G. Bykova

Institute of Mechanics, Lomonosov Moscow State University

Email: vyl69@mail.ru
Russian Federation, Moscow

I. E. Zabelinsky

Institute of Mechanics, Lomonosov Moscow State University

Email: vyl69@mail.ru
Russian Federation, Moscow

References

  1. J.S. Shang and S.T. Surzhikov, Prog. Aerospace Sci. 53, 46 (2012). https://doi.org/10.1016/j.paerosci.2012.02.003
  2. S.T. Surzhikov, Rus. J. Phys. Chem. B 4, 613 (2010).
  3. N.G. Bykova, K.S. Gochelashvily, D.M. Karfidov et al., Appl. Optics. 56, 2597 (2017). https://doi.org/10.1364/AO.56.002597
  4. D. Luís, V. Giangaspero, A. Viladegut, A. Lani, A. Camps, and O. Chazot, Acta Astronaut. 212, 408 (2023). https://doi.org/10.1016/j.actaastro.2023.07.028
  5. O. Uyanna and H. Najafi, Acta Astronaut. 176, 341 (2020). https://doi.org/10.1016/j.actaastro.2020.06.047
  6. O. Igra and F. Seiler, Experimental methods of shock wave research (Springer, New York, 2016).
  7. P. Reyner, Prog. Aerospace Sci. 85, 1 (2016). https://doi.org/10.1016/j.paerosci.2016.04.002
  8. S. Gu and H. Olivier, Prog. Aerospace Sci. 113, 100607 (2020). https://doi.org/10.1016/j.paerosci.2020.100607
  9. G.Ya. Gerasimov, P.V. Kozlov, I.E. Zabelinsky, N.G. Bykova, and V.Yu. Levashov, Rus. J. Phys. Chem. B 16, 642 (2022).
  10. A.M. Brandis, C.O. Johnston, B.A. Cruden, D. Prabhu, and D. Bose, J. Thermophys. Heat Trans. 29, 209 (2015). https://doi.org/10.2514/1.T4000
  11. M. McGilvray, L.J. Doherty, R.G. Morgan, and D.E. Gildfind, AIAA Paper No. 2015-3543 (2015). doi: 10.2514/6.2015-3545
  12. H. Wei, R.G. Morgan, and T.J. McIntyre, AIAA Paper No. 2017-4531 (2017). https://doi.org/10.2514/6.2017-4531
  13. L.B. Ibragimova, A.L. Sergievskaya, V.Yu. Levashov, O.P. Shatalov, Yu.V. Tunik, and I.E. Zabelinskii, J. Chem. Phys. 139, 034317 (2013). https://doi.org/10.1063/1.4813070
  14. M.A. Kotov, P.V. Kozlov, G.Ya. Gerasimov et al., Rus. J. Phys. Chem. B 16, 655 (2022).
  15. A.M. Tereza, P.V. Kozlov, G.Ya. Gerasimov, V.Yu. Levashov, I.E. Zabelinsky, and N.G. Bykova, Acta Astronaut. 204, 705 (2023). https://doi.org/10.1016/j.actaastro.2022.11.001
  16. N.G. Bykova, Zabelinsky I.E., P.V. Kozlov, G.Ya. Gerasimov, and V.Yu. Levashov, Rus. J. Phys. Chem. B 17, 1152 (2023).
  17. Y.V. Stupochenko, S.A. Losev, and A.I. Osipov, Relaxation in Shock Waves (Springer, New York, 1967).
  18. W. Lochte-Holtgreven, Plasma Diagnostics (Willey, New York, 1968).
  19. Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, 3rd ed. (Dover Publ., New York, 2002).
  20. A. Lemal, S. Nomura, and K. Fujita K., Hypersonic Meteoroid Entry Physics. Ed. by G. Colonna, M. Capitelli, and A. Laricchiuta (IOP Publ., Bristol, 2019). P. 9–1.
  21. H.D. Weymann, Phys. Fluids. 12, 1193 (1969). https://doi.org/10.1063/1.1692651
  22. M. Kim, A. Gülhan, and I.D. Boyd, J. Thermophys. Heat Transf. 26, 244 (2012). https://doi.org/10.2514/1.T3716
  23. M.A. Kotov, P.V. Kozlov, K.Yu. Osipenko et al., Rus. J. Phys. Chem. B 17, 1160 (2023).
  24. M.B. Zheleznyak, A.Kh. Mnatsakanyan, and S.V. Sizykh, High Temp. 20, 357 (1982).
  25. G.W. Penney and G.T. Hummert, J. Appl. Phys. 41, 572 (1970). https://doi.org/10.1063/1.1658715
  26. G.V. Naidis, Plasma Sources Sci. Technol. 15, 253 (2006). https://doi.org/10.1088/0963-0252/15/2/010
  27. M. Jiang, Y. Li, H. Wang, P. Zhong, and C. Liu, Phys. Plasmas. 25, 012127 (2018). https://doi.org/10.1063/1.5019478
  28. V.A. Gorelov, M.K. Gladyshev, A.Y. Kireev, and I.V. Yegorov, J. Thermophys. Heat Transf. 12, 172 (1998).
  29. A.S. Dikalyuk and S.T. Surzhikov, Fluid Dynam. 48, 123 (2013). https://doi.org/10.2514/2.6342
  30. H. Katsurayama, A. Matsuda, and T. Abe, AIAA Paper № 2007-4552 (2007). https://doi.org/ 10.2514/6.2007-4552
  31. B.E. Cherrington, Plasma Chem. Plasma Process. 2, 113 (1982). https://doi.org/10.1007/BF00633129
  32. B.V. Alekseev and V.A. Kotelnikov, Probe method for plasma diagnostics (Energoatomizdat, Moscow, 1988).
  33. V.I. Demidov, N.B. Kolokolov N.B., and A.A. Kudryavtsev, Probe methods for studying low-temperature plasma (Energoatomizdat, Moscow, 1996).
  34. P.M. Bryant, Plasma Sources Sci. Technol. 18, 014013 (2009). https://doi.org/10.1088/0963-0252/18/1/014013
  35. A.P. Ershov, Langmuir electrical probe method (MSU Press, Moscow, 2007).
  36. V.I. Demidov, S.V. Ratynskaia, and K. Rypdal, Rev. Sci. Instrum. 73, 3409 (2002). https://doi.org/10.1063/1.1505099
  37. R.L. Merlino, Am. J. Phys. 75, 1078 (2007). https://doi.org/ 10.1119/1.2772282
  38. S.A. Stanley and L.A. Carlson, J. Spacecr. Rockets 29, 190 (1992). https://doi.org/10.2514/3.26334
  39. C.O. Johnson, A. Mazaheri, G. Gnotto et al., AIAA Paper № 2011-3145 (2011). https://doi.org/10.2514/6.2011-3145
  40. S. Nomura, T. Kawakami, and K. Fujita, J. Ther mophys. Heat Transf. 35, 518 (2021). https://doi.org/10.2514/1.T6057
  41. V.A. Gorelov, L.A. Kildiushova, and V.M. Chernyshov, TsAGI Sci. Notes 8 (6), 49 (1977).
  42. K. Fujita, S. Sato, T. Abe, and A. Matsuda, AIAA Paper № 2001-2765 (2001). https://doi.org/10.2514/6.2001-2765
  43. V.A. Gorelov, L.A. Kildiushova, and V.M. Chernyshov, High Temp. 21, 449 (1983).
  44. R.H. Kirchhoff, Е.W. Peterson, and L. Talbot, AIAA J. 9, 1686 (1971). https://doi.org/10.2514/3.49974
  45. G.N. Zalogin, V.V. Lunev, and Y.A. Plastinin, Fluid Dyn. 15, 85 (1980).
  46. S. Wang, J.P. Cui, B.C. Fan, et al., Shock waves. Ed. by Z. Jiang (Springer, Berlin, 2005). P. 269.
  47. P.J. Ryan, J.W. Bradley, and M. D. Bowden, Phys. Plasmas. 26, 040702 (2019). https://doi.org/10.1063/1.5094602
  48. P.A. Vlasov, D.I. Mikhailov, I.L. Pankrat’eva, and V.A. Polyanskii, Fluid Dyn. 55, 735 (2020).
  49. K.K.N. Anbuselvan, V. Anand, Y. Krishna, and M.G. Rao, J. Quant. Spectrosc. Radiat. Transf. 272, 107744 (2021). https://doi.org/10.1016/j.jqsrt.2021.107744
  50. N. Konjević, M. Ivković, and N. Sakan, Spectrochim. Acta Part B. 76, 16 (2012). https://doi.org/10.1016/j.sab.2012.06.026
  51. K.-B. Chai and D.-H. Kwon, J. Quant. Spectrosc. Radiat. Transf. 227, 135 (2019). https://doi.org/10.1016/j.jqsrt.2019.02.015
  52. P.V. Kozlov, I.E. Zabelinsky, N.G. Bykova, G.Ya. Gerasimov, V.Yu. Levashov, Yu.V. Tunik, Acta Astronaut. 194, 461 (2022). https://doi.org/10.1016/j.actaastro.2021.10.032
  53. M.A. Gigosos and V. Cardeñoso, J. Phys. B: At. Mol. Opt. Phys. 29, 4795 (1996). https://doi.org/10.1088/0953-4075/29/20/029
  54. M.A. Gigosos, M.A. Gonzalez, and V. Cardeñoso, Spectrochim. Acta Part B: Atom. Spectrosc. 58, 1489 (2003). https://doi.org/10.1016/S0584-8547(03)00097-1
  55. K. Fujita, S. Sato, T. Abe, and H. Otsu, J. Thermophys. Heat Transf. 17, 210 (2003). https://doi.org/10.2514/2.6753
  56. G. Yamada, AIAA J. 60, 5645 (2022). https://doi.org/10.2514/1.J061470
  57. B.A. Cruden, J. Thermophys. Heat Transf. 26, 222 (2012). https://doi.org/10.2514/1.T3796
  58. Y. Li, S. Wang, C.L. Strand, and R.K. Hanson, Plasma Sources Sci. Technol. 30, 025007 (2021). https://doi.org/10.1088/1361-6595/abdd12
  59. H. Griem, Spectral line broadening by plasmas (Academic Press: New York, 1974).
  60. Y. Li, S. Wang, C.L. Strand, and R.K. Hanson, J. Phys. Chem. A. 124, 3687 (2020). https://doi.org/10.1021/acs.jpca.0c00466
  61. N.Q. Minesi, A.P. Nair, M.O. Richmond, N.M. Kuenning, C.C. Jelloian, and R.M. Spearrin, Appl. Opt. 62, 782 (2023). https://doi.org/10.1364/AO.479155
  62. K.E. Evdokimov, M.E. Konischev, V.F. Pichugin, and Z. Sun, Resource-Efficient Technol. 3, 187 (2017). https://doi.org/10.1016/j.reffit.2017.04.002
  63. K. Lin, A. Nezu, and H. Akatsuka, Jpn. J. Appl. Phys. 61, 116001 (2022). https://doi.org/10.35848/1347-4065/ac88ac
  64. Y.-F. Wang and X.-M. Zhu, Spectrochim. Acta Part B. 208, 106777 (2023). https://doi.org/ 10.1016/j.sab.2023.106777
  65. M. A. Heald and C. B. Wharton, Plasma diagnostics with microwaves (Wiley: New York, 1965).
  66. V.E. Golant, Microwave methods for plasma research (Nauka: Moscow, 1968).
  67. L.A. Dushin, Microwave interferometers for measuring plasma density in a pulsed gas discharge (Atomizdat: Moscow, 1973).
  68. S.-H. Seo, Fusion Eng. Design. 190, 113501 (2023). https://doi.org/10.1016/j.fusengdes.2023.113501
  69. M.A. Cappelli, N. Gascon, and W.A. Hargus, Jr., J. Phys. D: Appl. Phys. 39, 4582 (2006). https://doi.org/10.1088/0022-3727/39/21/013
  70. K. Dittmann, C. Kullig, and J. Meichsner, Plasma Sources Sci. Technol. 21, 024001 (2012). https://doi.org/10.1088/0963-0252/21/2/024001
  71. O. Tudisco, A.L. Fabris, C. Falcetta, et al., Rev. Sci. Instrum. 84, 033505 (2013). https://doi.org/10.1063/1.4797470
  72. S.-H. Seo, J. Park, H.M. Wi, et al., Rev. Sci. Instrum. 84, 084702 (2013). https://doi.org/10.1063/1.4817305
  73. A.V. Sidorov, O.L. Krutkin, A.B. Altukhov, et al., Tech. Phys. 65, 553 (2022).
  74. P.A. Vlasov, Yu.K. Karasevich, I.L. Pankrat’eva, and V.A. Polyansky, Phys.-Chem. Kinet. Gaz. Dynam. 6 (1), 1 (2008).
  75. I.I. Glass and W.S. Liu, J. Fluid Mech. 84, 55 (1978). https://doi.org/10.1017/S002211207800004X
  76. M.G. Kapper and J.-L. Cambier, J. Appl. Phys. 109, 113308 (2011). https://doi.org/10.1063/1.3585688
  77. G.L. Agafonov, D.I. Mikhailov, V.N. Smirnov, A.M. Tereza, P.A. Vlasov, and I.V. Zhiltsova, Combust. Sci. Technol. 188, 1815 (2016). https://doi.org/10.1080/00102202.2016.1211861
  78. N. Toujani, A.B.S. Alquaity, and A. Farooq, Rev. Sci. Instrum. 90, 054706 (2019). https://doi.org/10.1063/1.5086854
  79. J.S. Lim, Y.J. Hong, B. Ghimire, J. Choi, S. Mumtaz, and E.H. Choi, Results Phys. 20, 103693 (2021). https://doi.org/10.1016/j.rinp.2020.103693
  80. O.B. Ananin, O.A. Bashutin, G.S. Bogdanov, et al., Phys. Procedia. 71, 142 (2015). https://doi.org/10.1016/j.phpro.2015.08.335
  81. D.V. Yanin, A.V. Kostrov, A.I. Smirnov, A.V. Stri kovsky, Tech. Phys. 53, 129 (2008).
  82. S.K. Karkari, A.R. Ellingboe, C. Gaman, Appl. Phys. Lett. 93, 071501 (2008). https://doi.org/10.1063/1.2971236
  83. A.G. Galka, M.S. Malyshev, and A.V. Kostrov, Radiophys. Quantum El. 65, 555 (2022). https://doi.org/10.1007/s11141-023-10236-0
  84. V.A. Gorelov and A.Yu. Kireev, Phys.-Chem. Kinet. Gaz. Dynam. 15 (1), 1 (2014).
  85. J.M.Palomares, S.Hübner, E.A.D.Carbone, et al., Spectrochim. Acta Part B. 73, 39 (2012). https://doi.org/10.1016/j.sab.2012.07.005
  86. S.H. Zaidi, Z. Tang, A.P. Yalin, P. Barker, and R.B. Miles, AIAA J. 40, 1087 (2002). https://doi.org/10.2514/2.1756
  87. K. Muraoka and A. Kono, J. Phys. D: Appl. Phys. 44, 043001 (2011). https://doi.org/10.1088/0022-3727/44/4/043001
  88. D.H. Fronda, J.S. Ross, L. Divol, and S.H. Glenzer, Rev. Sci. Instrum. 77, 10E522 (2006). https://doi.org/10.1063/1.2336451
  89. H. Zhang, J.J. Pilgram, C.G. Constantin, et al., Instruments. 7(3), 25 (2023). https://doi.org/10.3390/instruments7030025
  90. K. Dzierżga, A.Mendys, and B. Pokrzywka, Spectro chim. Acta Part B. 98, 76 (2014). https://doi.org/10.1016/j.sab.2014.03.010
  91. A.M. Roettgen, I. Shkurenkov, W.R. Lempert, and I.V. Adamovich, AIAA Paper № 2015-1829 (2015). https://doi.org/10.2514/6.2015-1829

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of ionization processes before the shock wave: a – diffusion, b – photoionization [20]. The arrow shows the direction of movement of the shock wave.

Download (63KB)
3. Fig. 2. Dependence of the electron concentration in front of a strong shock wave in air on the distance to the shock front, measured by the probe method at VSW = 12.3 (1), 11.5 (2) and 10.7 km/s (3) [40]. Initial pressure p0 = 0.23 Torr.

Download (43KB)
4. Fig. 3. Dependence of the electron concentration behind a strong shock wave in air on the shock wave velocity, measured by the probe method [43]. The line is the results of the equilibrium calculation.

Download (42KB)
5. Fig. 4. Electron concentrations measured behind a strong shock wave in air based on the analysis of the Stark broadening of the N lines (410 and 411 nm) at p0 = 0.9 (1), 0.5 (2), 0.2 (3) and 0.1 Torr (4) [57]. The lines are the result of an equilibrium calculation.

Download (53KB)
6. Fig. 5. Time dependence of the electron concentration in a 1% O2 + Ar mixture behind a reflected shock wave at T = 11209 K and p = 0.37 atm, measured by the Stark broadening (1) and Stark shift (2) methods [58]. The line is the calculation results.

Download (39KB)
7. Fig. 6. Intensity of the emission spectral lines of argon measured in the plasma of a magnetron discharge at a discharge power of 1 kW and a pressure of 0.06 Pa (1) and calculated using the collision-radiation model (2) [62].

Download (50KB)
8. Fig. 7. Comparison of the experimental dependence ne = ne(x) behind the incident shock wave in Ar (1) at p0 = 5 Torr and VSW = 4.2 km/s [75] with the results of calculation (2) using the collision-radiation model [76].

Download (39KB)
9. Fig. 8. Comparison of the time dependences of ne measured by a microwave interferometer with Lecher lines (triangles) and horn-lens focusing (squares) during ignition of a mixture of 0.5% CH4 + 2% O2 + 97.5% Ar behind a reflected shock wave [77].

Download (33KB)

Copyright (c) 2024 Russian Academy of Sciences