Methods for measuring electron concentration in shock waves
- Authors: Gerasimov G.Y.1, Levashov V.Y.1, Kozlov P.V.1, Bykova N.G.1, Zabelinsky I.E.1
-
Affiliations:
- Institute of Mechanics, Lomonosov Moscow State University
- Issue: Vol 43, No 7 (2024)
- Pages: 31-46
- Section: Combustion, explosion and shock waves
- URL: https://vestnikugrasu.org/0207-401X/article/view/674923
- DOI: https://doi.org/10.31857/S0207401X24070047
- ID: 674923
Cite item
Abstract
The current state of research on measuring the electron concentration in low-temperature plasma in the vicinity of a strong shock wave, which simulates the conditions of the descend spacecraft entry into the Earth’s atmosphere is considered. Various physicochemical processes leading to the formation of low-temperature plasma both ahead of the shock wave front and in the shock-heated gas are analyzed. A critical review of various plasma diagnostic methods is made, their advantages and disadvantages are noted. An analysis of numerous experimental data on measuring the electron concentration in various shock-heated gases under various conditions was carried out.
Full Text

About the authors
G. Ya. Gerasimov
Institute of Mechanics, Lomonosov Moscow State University
Email: vyl69@mail.ru
Russian Federation, Moscow
V. Yu. Levashov
Institute of Mechanics, Lomonosov Moscow State University
Author for correspondence.
Email: vyl69@mail.ru
Russian Federation, Moscow
P. V. Kozlov
Institute of Mechanics, Lomonosov Moscow State University
Email: vyl69@mail.ru
Russian Federation, Moscow
N. G. Bykova
Institute of Mechanics, Lomonosov Moscow State University
Email: vyl69@mail.ru
Russian Federation, Moscow
I. E. Zabelinsky
Institute of Mechanics, Lomonosov Moscow State University
Email: vyl69@mail.ru
Russian Federation, Moscow
References
- J.S. Shang and S.T. Surzhikov, Prog. Aerospace Sci. 53, 46 (2012). https://doi.org/10.1016/j.paerosci.2012.02.003
- S.T. Surzhikov, Rus. J. Phys. Chem. B 4, 613 (2010).
- N.G. Bykova, K.S. Gochelashvily, D.M. Karfidov et al., Appl. Optics. 56, 2597 (2017). https://doi.org/10.1364/AO.56.002597
- D. Luís, V. Giangaspero, A. Viladegut, A. Lani, A. Camps, and O. Chazot, Acta Astronaut. 212, 408 (2023). https://doi.org/10.1016/j.actaastro.2023.07.028
- O. Uyanna and H. Najafi, Acta Astronaut. 176, 341 (2020). https://doi.org/10.1016/j.actaastro.2020.06.047
- O. Igra and F. Seiler, Experimental methods of shock wave research (Springer, New York, 2016).
- P. Reyner, Prog. Aerospace Sci. 85, 1 (2016). https://doi.org/10.1016/j.paerosci.2016.04.002
- S. Gu and H. Olivier, Prog. Aerospace Sci. 113, 100607 (2020). https://doi.org/10.1016/j.paerosci.2020.100607
- G.Ya. Gerasimov, P.V. Kozlov, I.E. Zabelinsky, N.G. Bykova, and V.Yu. Levashov, Rus. J. Phys. Chem. B 16, 642 (2022).
- A.M. Brandis, C.O. Johnston, B.A. Cruden, D. Prabhu, and D. Bose, J. Thermophys. Heat Trans. 29, 209 (2015). https://doi.org/10.2514/1.T4000
- M. McGilvray, L.J. Doherty, R.G. Morgan, and D.E. Gildfind, AIAA Paper No. 2015-3543 (2015). doi: 10.2514/6.2015-3545
- H. Wei, R.G. Morgan, and T.J. McIntyre, AIAA Paper No. 2017-4531 (2017). https://doi.org/10.2514/6.2017-4531
- L.B. Ibragimova, A.L. Sergievskaya, V.Yu. Levashov, O.P. Shatalov, Yu.V. Tunik, and I.E. Zabelinskii, J. Chem. Phys. 139, 034317 (2013). https://doi.org/10.1063/1.4813070
- M.A. Kotov, P.V. Kozlov, G.Ya. Gerasimov et al., Rus. J. Phys. Chem. B 16, 655 (2022).
- A.M. Tereza, P.V. Kozlov, G.Ya. Gerasimov, V.Yu. Levashov, I.E. Zabelinsky, and N.G. Bykova, Acta Astronaut. 204, 705 (2023). https://doi.org/10.1016/j.actaastro.2022.11.001
- N.G. Bykova, Zabelinsky I.E., P.V. Kozlov, G.Ya. Gerasimov, and V.Yu. Levashov, Rus. J. Phys. Chem. B 17, 1152 (2023).
- Y.V. Stupochenko, S.A. Losev, and A.I. Osipov, Relaxation in Shock Waves (Springer, New York, 1967).
- W. Lochte-Holtgreven, Plasma Diagnostics (Willey, New York, 1968).
- Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, 3rd ed. (Dover Publ., New York, 2002).
- A. Lemal, S. Nomura, and K. Fujita K., Hypersonic Meteoroid Entry Physics. Ed. by G. Colonna, M. Capitelli, and A. Laricchiuta (IOP Publ., Bristol, 2019). P. 9–1.
- H.D. Weymann, Phys. Fluids. 12, 1193 (1969). https://doi.org/10.1063/1.1692651
- M. Kim, A. Gülhan, and I.D. Boyd, J. Thermophys. Heat Transf. 26, 244 (2012). https://doi.org/10.2514/1.T3716
- M.A. Kotov, P.V. Kozlov, K.Yu. Osipenko et al., Rus. J. Phys. Chem. B 17, 1160 (2023).
- M.B. Zheleznyak, A.Kh. Mnatsakanyan, and S.V. Sizykh, High Temp. 20, 357 (1982).
- G.W. Penney and G.T. Hummert, J. Appl. Phys. 41, 572 (1970). https://doi.org/10.1063/1.1658715
- G.V. Naidis, Plasma Sources Sci. Technol. 15, 253 (2006). https://doi.org/10.1088/0963-0252/15/2/010
- M. Jiang, Y. Li, H. Wang, P. Zhong, and C. Liu, Phys. Plasmas. 25, 012127 (2018). https://doi.org/10.1063/1.5019478
- V.A. Gorelov, M.K. Gladyshev, A.Y. Kireev, and I.V. Yegorov, J. Thermophys. Heat Transf. 12, 172 (1998).
- A.S. Dikalyuk and S.T. Surzhikov, Fluid Dynam. 48, 123 (2013). https://doi.org/10.2514/2.6342
- H. Katsurayama, A. Matsuda, and T. Abe, AIAA Paper № 2007-4552 (2007). https://doi.org/ 10.2514/6.2007-4552
- B.E. Cherrington, Plasma Chem. Plasma Process. 2, 113 (1982). https://doi.org/10.1007/BF00633129
- B.V. Alekseev and V.A. Kotelnikov, Probe method for plasma diagnostics (Energoatomizdat, Moscow, 1988).
- V.I. Demidov, N.B. Kolokolov N.B., and A.A. Kudryavtsev, Probe methods for studying low-temperature plasma (Energoatomizdat, Moscow, 1996).
- P.M. Bryant, Plasma Sources Sci. Technol. 18, 014013 (2009). https://doi.org/10.1088/0963-0252/18/1/014013
- A.P. Ershov, Langmuir electrical probe method (MSU Press, Moscow, 2007).
- V.I. Demidov, S.V. Ratynskaia, and K. Rypdal, Rev. Sci. Instrum. 73, 3409 (2002). https://doi.org/10.1063/1.1505099
- R.L. Merlino, Am. J. Phys. 75, 1078 (2007). https://doi.org/ 10.1119/1.2772282
- S.A. Stanley and L.A. Carlson, J. Spacecr. Rockets 29, 190 (1992). https://doi.org/10.2514/3.26334
- C.O. Johnson, A. Mazaheri, G. Gnotto et al., AIAA Paper № 2011-3145 (2011). https://doi.org/10.2514/6.2011-3145
- S. Nomura, T. Kawakami, and K. Fujita, J. Ther mophys. Heat Transf. 35, 518 (2021). https://doi.org/10.2514/1.T6057
- V.A. Gorelov, L.A. Kildiushova, and V.M. Chernyshov, TsAGI Sci. Notes 8 (6), 49 (1977).
- K. Fujita, S. Sato, T. Abe, and A. Matsuda, AIAA Paper № 2001-2765 (2001). https://doi.org/10.2514/6.2001-2765
- V.A. Gorelov, L.A. Kildiushova, and V.M. Chernyshov, High Temp. 21, 449 (1983).
- R.H. Kirchhoff, Е.W. Peterson, and L. Talbot, AIAA J. 9, 1686 (1971). https://doi.org/10.2514/3.49974
- G.N. Zalogin, V.V. Lunev, and Y.A. Plastinin, Fluid Dyn. 15, 85 (1980).
- S. Wang, J.P. Cui, B.C. Fan, et al., Shock waves. Ed. by Z. Jiang (Springer, Berlin, 2005). P. 269.
- P.J. Ryan, J.W. Bradley, and M. D. Bowden, Phys. Plasmas. 26, 040702 (2019). https://doi.org/10.1063/1.5094602
- P.A. Vlasov, D.I. Mikhailov, I.L. Pankrat’eva, and V.A. Polyanskii, Fluid Dyn. 55, 735 (2020).
- K.K.N. Anbuselvan, V. Anand, Y. Krishna, and M.G. Rao, J. Quant. Spectrosc. Radiat. Transf. 272, 107744 (2021). https://doi.org/10.1016/j.jqsrt.2021.107744
- N. Konjević, M. Ivković, and N. Sakan, Spectrochim. Acta Part B. 76, 16 (2012). https://doi.org/10.1016/j.sab.2012.06.026
- K.-B. Chai and D.-H. Kwon, J. Quant. Spectrosc. Radiat. Transf. 227, 135 (2019). https://doi.org/10.1016/j.jqsrt.2019.02.015
- P.V. Kozlov, I.E. Zabelinsky, N.G. Bykova, G.Ya. Gerasimov, V.Yu. Levashov, Yu.V. Tunik, Acta Astronaut. 194, 461 (2022). https://doi.org/10.1016/j.actaastro.2021.10.032
- M.A. Gigosos and V. Cardeñoso, J. Phys. B: At. Mol. Opt. Phys. 29, 4795 (1996). https://doi.org/10.1088/0953-4075/29/20/029
- M.A. Gigosos, M.A. Gonzalez, and V. Cardeñoso, Spectrochim. Acta Part B: Atom. Spectrosc. 58, 1489 (2003). https://doi.org/10.1016/S0584-8547(03)00097-1
- K. Fujita, S. Sato, T. Abe, and H. Otsu, J. Thermophys. Heat Transf. 17, 210 (2003). https://doi.org/10.2514/2.6753
- G. Yamada, AIAA J. 60, 5645 (2022). https://doi.org/10.2514/1.J061470
- B.A. Cruden, J. Thermophys. Heat Transf. 26, 222 (2012). https://doi.org/10.2514/1.T3796
- Y. Li, S. Wang, C.L. Strand, and R.K. Hanson, Plasma Sources Sci. Technol. 30, 025007 (2021). https://doi.org/10.1088/1361-6595/abdd12
- H. Griem, Spectral line broadening by plasmas (Academic Press: New York, 1974).
- Y. Li, S. Wang, C.L. Strand, and R.K. Hanson, J. Phys. Chem. A. 124, 3687 (2020). https://doi.org/10.1021/acs.jpca.0c00466
- N.Q. Minesi, A.P. Nair, M.O. Richmond, N.M. Kuenning, C.C. Jelloian, and R.M. Spearrin, Appl. Opt. 62, 782 (2023). https://doi.org/10.1364/AO.479155
- K.E. Evdokimov, M.E. Konischev, V.F. Pichugin, and Z. Sun, Resource-Efficient Technol. 3, 187 (2017). https://doi.org/10.1016/j.reffit.2017.04.002
- K. Lin, A. Nezu, and H. Akatsuka, Jpn. J. Appl. Phys. 61, 116001 (2022). https://doi.org/10.35848/1347-4065/ac88ac
- Y.-F. Wang and X.-M. Zhu, Spectrochim. Acta Part B. 208, 106777 (2023). https://doi.org/ 10.1016/j.sab.2023.106777
- M. A. Heald and C. B. Wharton, Plasma diagnostics with microwaves (Wiley: New York, 1965).
- V.E. Golant, Microwave methods for plasma research (Nauka: Moscow, 1968).
- L.A. Dushin, Microwave interferometers for measuring plasma density in a pulsed gas discharge (Atomizdat: Moscow, 1973).
- S.-H. Seo, Fusion Eng. Design. 190, 113501 (2023). https://doi.org/10.1016/j.fusengdes.2023.113501
- M.A. Cappelli, N. Gascon, and W.A. Hargus, Jr., J. Phys. D: Appl. Phys. 39, 4582 (2006). https://doi.org/10.1088/0022-3727/39/21/013
- K. Dittmann, C. Kullig, and J. Meichsner, Plasma Sources Sci. Technol. 21, 024001 (2012). https://doi.org/10.1088/0963-0252/21/2/024001
- O. Tudisco, A.L. Fabris, C. Falcetta, et al., Rev. Sci. Instrum. 84, 033505 (2013). https://doi.org/10.1063/1.4797470
- S.-H. Seo, J. Park, H.M. Wi, et al., Rev. Sci. Instrum. 84, 084702 (2013). https://doi.org/10.1063/1.4817305
- A.V. Sidorov, O.L. Krutkin, A.B. Altukhov, et al., Tech. Phys. 65, 553 (2022).
- P.A. Vlasov, Yu.K. Karasevich, I.L. Pankrat’eva, and V.A. Polyansky, Phys.-Chem. Kinet. Gaz. Dynam. 6 (1), 1 (2008).
- I.I. Glass and W.S. Liu, J. Fluid Mech. 84, 55 (1978). https://doi.org/10.1017/S002211207800004X
- M.G. Kapper and J.-L. Cambier, J. Appl. Phys. 109, 113308 (2011). https://doi.org/10.1063/1.3585688
- G.L. Agafonov, D.I. Mikhailov, V.N. Smirnov, A.M. Tereza, P.A. Vlasov, and I.V. Zhiltsova, Combust. Sci. Technol. 188, 1815 (2016). https://doi.org/10.1080/00102202.2016.1211861
- N. Toujani, A.B.S. Alquaity, and A. Farooq, Rev. Sci. Instrum. 90, 054706 (2019). https://doi.org/10.1063/1.5086854
- J.S. Lim, Y.J. Hong, B. Ghimire, J. Choi, S. Mumtaz, and E.H. Choi, Results Phys. 20, 103693 (2021). https://doi.org/10.1016/j.rinp.2020.103693
- O.B. Ananin, O.A. Bashutin, G.S. Bogdanov, et al., Phys. Procedia. 71, 142 (2015). https://doi.org/10.1016/j.phpro.2015.08.335
- D.V. Yanin, A.V. Kostrov, A.I. Smirnov, A.V. Stri kovsky, Tech. Phys. 53, 129 (2008).
- S.K. Karkari, A.R. Ellingboe, C. Gaman, Appl. Phys. Lett. 93, 071501 (2008). https://doi.org/10.1063/1.2971236
- A.G. Galka, M.S. Malyshev, and A.V. Kostrov, Radiophys. Quantum El. 65, 555 (2022). https://doi.org/10.1007/s11141-023-10236-0
- V.A. Gorelov and A.Yu. Kireev, Phys.-Chem. Kinet. Gaz. Dynam. 15 (1), 1 (2014).
- J.M.Palomares, S.Hübner, E.A.D.Carbone, et al., Spectrochim. Acta Part B. 73, 39 (2012). https://doi.org/10.1016/j.sab.2012.07.005
- S.H. Zaidi, Z. Tang, A.P. Yalin, P. Barker, and R.B. Miles, AIAA J. 40, 1087 (2002). https://doi.org/10.2514/2.1756
- K. Muraoka and A. Kono, J. Phys. D: Appl. Phys. 44, 043001 (2011). https://doi.org/10.1088/0022-3727/44/4/043001
- D.H. Fronda, J.S. Ross, L. Divol, and S.H. Glenzer, Rev. Sci. Instrum. 77, 10E522 (2006). https://doi.org/10.1063/1.2336451
- H. Zhang, J.J. Pilgram, C.G. Constantin, et al., Instruments. 7(3), 25 (2023). https://doi.org/10.3390/instruments7030025
- K. Dzierżga, A.Mendys, and B. Pokrzywka, Spectro chim. Acta Part B. 98, 76 (2014). https://doi.org/10.1016/j.sab.2014.03.010
- A.M. Roettgen, I. Shkurenkov, W.R. Lempert, and I.V. Adamovich, AIAA Paper № 2015-1829 (2015). https://doi.org/10.2514/6.2015-1829
Supplementary files
