Structural and Mechanical Properties of Hydrogels Based on Polyelectrolyte Complexes of N-Succinyl-Chitosan with Poly-N,N-Diallyl-N,N-Dimethylammonium Chloride

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This article studies the structural and mechanical properties of polymer hydrogels based on polyelectrolyte complexes of N-succinyl-chitosan (NSC) with poly-N,N-diallyl-N,N-dimethylammonium chloride, depending on the composition of the reaction mixture and the conditions for obtaining complexes. The types of intermolecular interaction between the components of the complexes are studied by IR spectroscopy. The causes of swelling of coacervates based on polyelectrolyte complexes of N-succinylchitosan-chitosan with poly-N,N-diallyl-N,N-dimethylammonium chloride are analyzed. The relationship between the composition of coacervates and the structural-mechanical and transport properties of the gels formed from them is established. The developed approach to create elastic-viscous systems can be implemented when creating gel-like polymeric materials capable of self-organization into systems with controlled characteristics of the structure.

About the authors

M. V. Bazunova

Bashkir State University, Ufa, Russia

Email: mbazunova@mail.ru
Россия, Уфа

R. A. Mustakimov

Bashkir State University, Ufa, Russia

Email: mbazunova@mail.ru
Россия, Уфа

E. I. Kulish

Bashkir State University, Ufa, Russia

Author for correspondence.
Email: mbazunova@mail.ru
Россия, Уфа

References

  1. Hoffman A.S. // Adv. Drug Delivery Rev. 2012. V. 64. P. 18; https://doi.org/10.1016/j.addr.2012.09.010
  2. Ruel-Garie’py E., Leroux J.C. // Eur. J. Pharmacol. 2005. V. 58. P. 409; https://doi.org/10.1016/j.ejpb.2004.03.019
  3. Catoira M.C., Fusaro L., Francesco D.D. et al. // J. Mater. Sci. – Mater. Med. 2019. V. 30. № 10. P. 1; https://doi.org/10.1007/s10856-019-6318-7
  4. Шуршина А.С., Галина А.Р., Лаздин Р.Ю. и др. // Хим. физика. 2021. Т. 40. № 7. С. 58; https://doi.org/10.31857/S0207401X21070098
  5. Шуршина А.С., Галина А.Р., Кулиш Е.И. // Хим. физика. 2022. Т. 41. №. 4. С. 63; https://doi.org/10.31857/S0207401X22040082
  6. Кабанов В.А. // Успехи химии. 2005. Т. 74. № 1. С. 5.
  7. Зезин А.Б., Луценко В.В., Рогачева В.Б. и др. // Высокомолекуляр. соединения. Сер. А. 1999. Т. 41. № 12. С. 1966.
  8. Изумрудов В.А. // Успехи химии. 2008. Т. 77. № 4. С. 401.
  9. Hamad F.G., Chen Q., Colby R.H. // Macromolcculos. 2018. V. 51. № 15. P. 5547–555; https://doi.org/10.1021/acs.macromol.8b00401
  10. Rumyantsev A.M., Jackson N.E., De Pablo J.J. // Annu. Rev. Condens. Matter Phys. 2021. V. 12. № 1. P. 155; https://doi.org/10.1146/annurev-conmatphys-042020-113457
  11. Shahid B., Yin Y.T., Ramesh S. et al. // Polym. Degrad. Stab. 2017. V. 139. P. 38; https://doi.org/10.1016/j.polymdegradstab.2017.03.014
  12. Mart’ınez-Ruvalcaba A., Chornet E., Rodrigue D. // Carbohydr. Polym. 2007. V. 67. № 4. P. 586; https://doi.org/10.1016/j.carbpol.2006.06.033
  13. Mura C., Nácher A., Merino V. et al. // Colloids Surf., B. 2012. V. 94. P. 199; https://doi.org/10.1016/j.colsurfb.2012.01.030
  14. De la Torre P.M., Torrado S. // Biomaterials. 2003. V. 24. № 8. P. 1459; https://doi.org/10.1016/S0142-9612(02)00541-0
  15. Сливкин Д.А., Лапенко В.Л., Сафонова О.А. и др. // Вестн. Воронежского гос. ун-та. 2011. № 2. С. 214.
  16. Kato Y., Onishi H., Mashida Y. // Biomaterials. 2004. V. 25. № 5. P. 907; https://doi.org/10.1016/s0142-9612(03)00598-2
  17. Yan C., Gu J., Hou D. et al. // Intern. J. Biol. Macromol. 2015. V. 72. P. 751; https://doi.org/10.1016/j.ijbiomac.2014.09.031
  18. Шуршина А.С., Базунова М.В., Чернова В.В. и др. // Высокомолекуляр. соединения. Сер. А. 2020. Т. 62. № 4. С. 294; https://doi.org/10.31857/S2308112020040100
  19. Базунова М.В., Мустакимов Р.А., Кулиш Е.И. // Хим. физика. 2021. Т. 40. № 9. С. 72; https://doi.org/10.31857/S0207401X21090028
  20. Sanches L.M., Petri D.F.S., Melo Carrasco L.D. et al. // J. Nanobiotechnol. 2015. V. 13. № 1. P. 1; https://doi.org/10.1186/s12951-015-0123-3
  21. Бадыкова Л.А., Мударисова Р.Х., Колесов С.В. // Хим. физика. 2020. Т. 39. № 1. С. 88; https://doi.org/10.31857/S0207401X20010033
  22. Базунова М.В., Мустакимов Р.А., Бакирова Э.Р. // ЖПХ. 2022. Т. 95. № 1. С. 42; https://doi.org/10.31857/S0044461822010054
  23. Васильев В.П. Аналитическая химия. Т. 1. М.: Высшая школа, 1989. С. 256.
  24. Тагер А.А. Физико-химия полимеров. Изд. 4-е, перераб. и дополн. M.: Науч. мир, 2007.
  25. Ferreira S.B., Moço T.D., Borghi-Pangoni F.B. et al. // J. Mech. Behav. Biomed. Mater. 2016. V. 55. P. 164; https://doi.org/10.1016/j.jmbbm.2015.10.026
  26. Ильин С.О., Куличихин В.Г., Малкин А.Я. // Высокомолекуляр. соединения. Сер. А. 2013. Т. 55. № 8. С. 1071; https://doi.org/10.7868/S0507547513070052
  27. Karvinen J., Ihalainen T.O., Calejo M.T. et al. // Mater. Sci. Eng., C. 2019. V. 94. P. 1056; https://doi.org/10.1016/j.msec.2018.10.048

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (148KB)
3.

Download (698KB)
4.

Download (156KB)
5.

Download (247KB)
6.

Download (468KB)

Copyright (c) 2023 М.В. Базунова, Р.А. Мустакимов, Е.И. Кулиш