Effect of Water on the Structure of Polyethylene–Polylactide Binary Blends and Polyethylene–Polylactide–Aged Polyethylene Ternary Blends

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of water on double and triple polyethylene (PE)–polylactide (PLA) blends of various compositions, including those with the addition of aged polyethylene as an analog of recycled polymer is studied in this paper. It is established that the composition of the blends directly affects its characteristics, especially when exposed to water as an aggressive factor. PE–PLA composites have a maximum degree of water absorption of about 7.5%, and in the presence of the third component, oxidized polyethylene in the amount of 40 and 50 wt %, the degree of water absorption increases to 10%. It is shown by IR spectroscopy that after the action of water, structural elements belonging to PLA are destroyed, which is due to the more active interaction of water molecules with PLA molecules, while the characteristics of the polyethylene matrix remain practically unchanged.

About the authors

M. V. Podzorova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia; Plekhanov Russian University of Economics, Moscow, Russia

Email: mariapdz@mail.ru
Россия, Москва; Россия, Москва

Yu. V. Tertyshnaya

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia; Plekhanov Russian University of Economics, Moscow, Russia

Email: mariapdz@mail.ru
Россия, Москва; Россия, Москва

A. V. Khramkova

Politecnico di Milano, Piazza Leonardo da Vinci, Milan, Italy

Author for correspondence.
Email: mariapdz@mail.ru
Italy, Milan

References

  1. Кулезнев В.Н. Смеси полимеров. М.: Химия, 1980.
  2. Тертышная Ю.В., Подзорова М.В., Монахова Т.В., Попов А.А. // Хим. физика. 2019. Т. 38. № 3. С. 80; https://doi.org/10.1134/S0207401X19030105
  3. Тертышная Ю.В., Хватов А.В., Попов А.А. // Хим. физика. 2022. Т. 41. № 2. С. 86; https://doi.org/10.31857/S0207401X22020133
  4. Тертышная Ю.В., Ольхов А.А., Шибряева Л.С. // Высокомолекуляр. соединения. А. 2002. Т. 44. № 11. С. 2043.
  5. Anderson K.S., Lim S.H., Hillmyer M.A. // J. Appl. Polym. Sci. 2003. V. 89. P. 3757; https://doi.org/10.1002/app.12462
  6. Anderson K.S., Hillmyer M.A. // Polymer. 2004. V. 45 P. 8809; https://doi.org/10.1016/j.polymer.2004.10.047
  7. Kim F., Choi C.N., Kim Y.D., Lee K.Y., Lee M.S. // Fiber Polym. 2004. V. 5. P. 270; https://doi.org/10.1007/bf02875524
  8. Тертышная Ю.В., Подзорова М.В. // Хим. физика. 2020. Т. 39. № 1. С. 57; https://doi.org/10.31857/S0207401X20010173
  9. Тертышная Ю.В., Карпова С.Г., Подзорова М.В. // Хим. физика. 2021. Т. 40. № 9. С. 50; https://doi.org/10.31857/S0207401X21090090
  10. Rowland S.P. Water in Polymers; ACS Symp Series 127. Washington, DC, USA: ACS Publishing Center, 1980.
  11. Auras R., Lim L.-T., Selke S., Tsuji H. Poly(Lactic Acid). Synthesis, Structures, Properties, Processing, and Applications: Hydrolytic Degradation. New Jersey, NJ, USA: John Wiley & Sons, Inc., 2010. P. 345; https://doi.org/10.1002/9780470649848.ch21
  12. Тертышная Ю.В., Карпова С.Г., Попов А.А. // Хим. физика. 2017. Т. 36. № 6. С. 84; https://doi.org/10.7868/S0207401X17060140
  13. Huang Y., Zhang C., Pan Y., Zhou Y., Jiang L., Dan Y. // Polym. Degrad. Stab. 2013. V. 9. P. 943; https://doi.org/10.1016/j.polymdegradstab.2013.02.018
  14. Avinc O., Khoddami A. // Fibre Chem. 2009. V. 41. P. 391; https://doi.org/10.1007/S10692-010-9213-Z
  15. Gorassi G., Pantani R. // Adv. Polym. Sci. 2016. V. 279. P. 119; https://doi.org/10.1007/12_2016_12
  16. Tomihata K., Suzuki M., Ikada Y. // J. Biomed. Mater. Res. 2001. V.58. № 5. P. 511–518. https://doi.org/10.1002/jbm.1048
  17. Olewnik-Kruszkowska E. // Polym. Degrad. Stab. 2016. V. 129. P. 87-95. https://doi.org/10.1016/j.polymdegradstab.2016.04.009
  18. Подзорова М.В., Тертышная Ю.В. // Изв. РАН. Сер. хим. 2021. № 9. С. 1791-1797.
  19. Lim L.-T., Auras R., Rubino M. // Progr. Polym. Sci. 2008. V. 33. P. 820; https://doi.org/10.1016/j.progpolymsci.2008.05.004
  20. Подзорова М.В., Тертышная Ю.В. // ЖПХ. 2019. Т. 92. № 6. С. 737; https://doi.org/10.1134/S0044461819060069
  21. Matta A.K., Umamaheswara Rao R., Suman K.N.S., Rambabu V. // Proc. Mater. Sci. 2014. V. 6. P. 1266; https://doi.org/10.1016/j.mspro.2014.07.201
  22. Wachirahuttapong S., Thongpin C., Sombatsompop N. // Energy Procedia. 2016. № 89. P. 198; https://doi.org/10.1016/j.egypro.2016.05.026
  23. Graupner N.A., Müssig J. // Composites: Part A. 2011. V. 42. P. 2010; https://doi.org/10.1016/j.compositesa.2011.09.007
  24. Reddy N., Nama D., Yang Y. // Polym. Degrad. Stab. 2008. V. 93. P. 233; https://doi.org/10.1016/j.polymdegradstab.2007.09.005
  25. Poon B., Dias P., Ansems P. et al. // J. Appl. Polym. Sci. 2007. V. 104. P. 489; https://doi.org/10.1002/APP.25243
  26. Poon B.C., Chum S.P., Hiltner A., Baer E. // Polymer. 2004. V. 45. P. 893; https://doi.org/10.1016/j.polymer.2003.11.018
  27. Pollock G., Nazarenko S., Hiltner A., Baer E. // J. Appl. Polym. Sci. 1994. V. 52. P. 163; https://doi.org/10.1002/app.1994.070520205
  28. Волынский А.Л., Бакеев Н.Ф. // Высокомолекуляр. соединения. А. 2009. Т. 51. № 10. С. 1783.
  29. Stepanov E.V., Shuman T.L., Nazarenko S. et al. // Macromol. 1998. V. 31. P. 4551.
  30. Тертышная Ю.В., Подзорова М.В. // ЖПХ. 2018. Т. 91. № 3. С. 377.
  31. de Jong S.J., Arias E.R., Rijkers D.T.S. et al. // Polymer. 2001. V. 42. № 7. P. 2795; https://doi.org/10.1016/S0032-3861(00)00646-7
  32. Huang Y., Zhang Ch., Pan Y. et al. // Polym. Degrad. Stab. 2013. V. 98. № 5. P. 943; https://doi.org/10.1016/j.polymdegradstab.2013.02.018
  33. Тертышная Ю.В., Подзорова М.В. // ЖПХ. 2021. Т. 94. № 5. С. 638; https://doi.org/10.31857/S0044461821050121
  34. Odelius K., Hoglund A., Kumar S. et al. // Biomacromol. 2011. V. 12. № 4. P. 1250; https://doi.org/10.1021/bm1015464
  35. Holland S.J., Jolly A.M., Yasin M., Tighe B.J. // Biomaterials. 1987. V. 8. № 4. P. 289; https://doi.org/10.1016/0142-9612(87)90117-7
  36. Jorda-Vilaplana A., Fombuena V., Garcia-Garcia D., Samper M.D., Sánchez-Nácheret L. // Eur. Polym. J. 2014. V. 58. P. 23; https://doi.org/10.1016/J.EURPOLYMJ.2014.06.002
  37. Paula E., Mano V., Pereira F.V. // Polym. Degrad. Stab. 2011. V. 96. P. 1631; https://doi.org/10.1016/j.polymdegradstab.2011.06.006

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)
4.

Download (166KB)
5.

Download (94KB)
6.

Download (202KB)

Copyright (c) 2023 М.В. Подзорова, Ю.В. Тертышная, А.В. Храмкова